
CSC148 winter 2014

stools, names, tracing

week 5

Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/148/F13/

416-978-5899

February 4, 2014

http://www.cdf.toronto.edu/~heap/148/F13/

Outline

prose to (recursive) code

memory model

tracing... or not

getting that recursive insight for Tower of Hanoi

In order to implement a function that moves n cheeses from, say,

stool 1 to stool 3, we'd �rst think of a name and parameters.

We can start with move cheeses(n, source, dest), meaning show

the moves from source stool to destination stool for n cheeses.

stating that recursive insight:

The doodling on the previous slide breaks into a pattern, at

least for the 2- and 3-cheese case:

I move all but the bottom cheese from source to

intermediate stool (sounds recursive...)

I move the bottom cheese from the source to the destination

stool (sounds like the 1-cheese move)

I move all but the bottom cheese from the intermediate to

the destination stool (sounds recursive...)

The original problem repeats, except with di�erent source,

destination, and intermediate stools!

New name: move cheeses(n, source, intermediate, destination)

write some code!

Fill in the three steps from the previous slide, using recursive
calls to move cheeses(...) with di�erent values for the number of
cheeses, the source, destination, and intermediate stools, where
appropriate.

def move_cheeses(n: int, source: int, intermediate: int,

destination: int) -> None:

"""Print moves to get n cheeses from source

to destination, possibly using intermediate"""

if n > 1: # fill this in!

move_cheeses(?, ?, ?, ?)

move_cheeses(?, ?, ?, ?)

move_cheeses(?, ?, ?, ?)

else: # just 1 cheese --- leave this out for now!

complete that code!

Now, �ll in what you do to move just one cheese | don't use
any recursion! You will be returning a string that speci�es you
are moving from source to destination.

def move_cheeses(n: int, source: int, intermediate: int,

destination: int) -> None:

"""Print moves to get n cheeses from source

to destination, possibly using intermediate"""

if n > 1: # fill this in!

move_cheeses(n - 1, source, destination, intermediate)

move_cheeses(1, source, intermediate, destination)

move_cheeses(n - 1, intermediate, source, destination)

else: # just 1 cheese --- fill this in now!

return ????

python grati�cation

Once you have your code entered into some Python

environment, you should run it with a few small values of n. As

usual, you can get more intuition about it by tracing examples,

working from small to larger n

how much detail for developers?

Enough detail to predict results and e�ciency of our code |

more detail than end users, less than compiler/interpreter

designers. In Python:

I Every name contains a value

I Every value is a reference to the address of an object

searching for names

python looks, in order:

I innermost scope (function body, usually) local

I enclosing scopes nonlocal

I global (current module or __main__)

I built-in names

I see scopes and namespaces

http://docs.python.org/3.3/tutorial/classes.html#python-scopes-and-namespaces

intense example

Try running python docs namespace example to check your

comfort level

http://docs.python.org/3.3/tutorial/classes.html#scopes-and-namespaces-example

methods

The �rst parameter, conventionally called self, is a reference to

the instance:

>>> class Foo:

... def f(self):

... return "Hi world!"

...

>>> f1 = Foo()

Now Foo.f(f1) means f1.f()

hunting for a method...

Start in the nearest subclass and work upwards, for example

visualize method

https://mcs.utm.utoronto.ca/~pcrs/opt/tutor-dev.php#code=%23+Write+your+Python+code+here%0Aclass+A%3A%0A++++def+f(self,+n)%3A%0A++++++++return+n%0A++++%0A++++def+g(self,+n)%3A%0A++++++++return+self.f(n)%0A++++%0Aclass+B(A)%3A%0A++++def+f(self,+n)%3A%0A++++++++return+n+%2B+1%0A+%0Ab+%3D+B()%0Aprint(b.g(1))%0A&mode=edit&cumulative=false&heapPrimitives=true&drawParentPointers=true&textReferences=true&py=

don't trace too far!

def rec_max(L):

"""

Return the maximum number in possibly nested list of numbers.

>>> rec_max([17, 21, 0])

21

>>> rec_max([17, [21, 24], 0])

24

>>> rec_max([17, [21, 24], [18, 37, 16], 0])

37

"""

return max([rec_max(x) if isinstance(x, list) else x for x in L])

Recommended:

I trace the simplest (non-recursive) case

I trace the next-most complext case, plug in known results

I same as previous step...

TMI tracing

In contrast to the step-by-step, plus abstraction (previous

slide), you could trace this in the visualizer

https://mcs.utm.utoronto.ca/~pcrs/opt/tutor.php#code=%23+Write+your+Python+code+here%0Adef+rec_max(L)%3A++%0A++++%22%22%22++%0A++++Return+the+maximum+number+in+possibly+nested+list+of+numbers.++%0A+++%0A++++%3E%3E%3E+rec_max(%5B17,+21,+0%5D)+++%0A++++21+++%0A++++%3E%3E%3E+rec_max(%5B17,+%5B21,+24%5D,+0%5D)+++%0A++++24+++%0A++++%3E%3E%3E+rec_max(%5B17,+%5B21,+24%5D,+%5B18,+37,+16%5D,+0%5D)+++%0A++++37+++%0A++++%22%22%22++%0A++++return+max(%5Brec_max(x)+if+isinstance(x,+list)+else+x+for+x+in+L%5D)+%0A%0Ar+%3D+rec_max(%5B17,+%5B21,+24%5D,+%5B18,+37,+16%5D,+0%5D)%0A&mode=display&cumulative=false&heapPrimitives=true&drawParentPointers=true&textReferences=true&py=&curInstr=23

	prose to (recursive) code
	memory model
	tracing... or not

