
CSC148 winter 2014

inheritance, Exceptions, special methods

week 3

Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/148/F13/

416-978-5899

January 19, 2014



Outline

specialize software

raising exceptions



specialize 
exibly

If we decided to extend the features of Stack, what's wrong

with:

I modifying the existing Stack?

I cut-paste-modify Stack �! MyStack?

I include Stack attribute in new classes



class declaration

we subclass (extend) a superclass (base class) by:

I declaring that we're extending it. . .

class NewClass(OldClass):

...

I add methods and attributes to specialize

I other methods and attributes are searched for in superclass



override versus extend

you may replace or modify old code

I subclass method with the same name replace superclass

method

I access superclass method with

OldClass.method(self,...)

I __init__ is a special case | careful



richer communication

return types are not appropriate in all cases

I what's wrong with IntStack returning a \special" integer

for pop-on-empty?

I push usually has return type None, but what if stu�

happens?

I what if the calling code doesn't know what to do?



cause existing Exceptions:

I int("seven")

I a = 1/0

I [1, 2][2]



raise existing Exceptions:

I raise ValueError or. . .

I raise ValueError("you can’t do that!")



roll your own Exceptions:

I class ExtremeException(Exception):

pass

I raise ExtremeException

I raise ExtremeException(’I really take exception

to that!’)



what makes two stack equivalent?

Tell Python with __eq__

Your __eq__ should really be equivalent: symmetrical,

re
exive, transitive



represent in a reproducible way

Tell Python how to represent your object with __repr__

Ideally, you should be able to cut-and-paste this representation

to create an equivalent object


