
CSC148 winter 2014
sorting big-oh

week 10

Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/148/W14/

416-978-5899

March 19, 2014

http://www.cdf.toronto.edu/~heap/148/W14/

Outline

assignment # 2 questions

more big-oh, better sorts

is regex(s)

Returns True if the string s is a valid regular expression, False

otherwise. Think about. . .

I simplest expressions | how can you check for these and

reject many strings?

I binary expressions | | and . | how can you check for

these? How can you break up the remainder of the string

so that you can check it?

I unary expressions | | how can you check for these? how

can you break up the remainder of the string so that you

can check it?

all regex permutations(s)

Returns a set (could be empty) of permutations of s that are

valid regular expressions. Think about. . .

I how to produce a set of permutations? There is lots of code

laying about, including in week 4 of this course's calendar

I �lter out any permutation that isn't a regex | it would

sure be nice to have some code that could test whether a

string were a regex. . .

I a string of length n has n-factorial permutations |

producing an impractically large set for n > 8.

regex match(r, s)

Returns True if string s matches the regular expression

equivalent to the tree rooted at r, False otherwise. Think

about. . .

I you may assume that r is an instance of one of the

specialized regular expression tree classes in regextree.py

I what are the simplest cases of string s to consider?

I if the symbol at the root of r is a |, what do you need to

check?

I if the symbol at the root of r is a ., what do you need to

check?

I if the symbol at the root of r is a *, what do you need to

check? (more on this next slide)

star regexes...

The handout says that a string s matches a regular expression

r* (where r is the child regular expression) if and only if:

I s is the empty string | pretty easy to check OR

I s = s1 + s2 + � � � + sk where each si matches the child

regular expression r. This seems harder to check | so

many ways to break up s!

I equivalently (why?) s = s1 + s2, where s1 matches the child

regular expression r and s2 matches r* | now you only

have to check every possible way to break s into two pieces.

build regex tree(r)

Return the regular expression tree equivalent to the valid (we

promise) regular expression regex. Think about:

I very similar thinking to is regex

I instead of checking whether regex is a regular expression

(you are guaranteed that it is), you have to break it into a

few pieces to determine which sort of regular expression

tree, and provide input strings to form its children (if any)

I strangely, that's all there is to do!

quick sort

idea: choose a pivot; decide where the pivot goes with respect

to the rest of the list, repeat on the partitions...

a digression. . .

what could go wrong?

def f(n: int, L: list=[]) -> list:

L.append(n)

return L

quick sort performance

I how many times do we choose the pivot?

I how many steps each time we choose a pivot?

merge sort

idea: divide the list in half, (merge) sort the halves, then merge

the sorted results

merge sort performance

I how many times do we split the list in half?

I how many steps each time we split?

scaling:

How well do these various sorts perform as the size of the

problem (list length) increases? Time and compare.

	assignment # 2 questions
	more big-oh, better sorts

