
CSC148, Lab #4

week of February 3rd, 2014

This document contains the instructions for lab number 4 in CSC148H. To earn your lab mark, you must

actively participate in the lab. We mark you in order to ensure a serious attempt at learning, NOT to make

careful critical judgments on the results of your work.

General rules

We will use the same general rules as for the �rst lab (including pair programming). See the instructions at

the beginning of Lab 1 to refresh your memory.

Overview

In this lab, you will practice reading, and then writing recursive functions.

Recursive functions model the solution to recursive problems | problems that can (mostly) be broken

down into instances of a similar problem. Most of the work is done up front | thinking about the solution

before you begin writing a lot of code, and thinking of it as made up of similar subproblems. In what follows

we call this the recursion insight. In most cases we will provide you with the insight, and leave you the task

of applying it to either trace or write some code.

Tracing recursion

The next two exercises are paper-and-pencil (you may also use a pen), and there is neither driver nor

navigator. You must discuss the solutions you come up with, though.

Greatest Common Denominator — GCD

This very e�cient algorithm is over 2000 years old, and is credited to Euclid (yes that Euclid). It is a

technique to �nd the largest non-negative whole number that divides two di�erent numbers, n1 and n2. You

could certainly do this by listing all the divisors of n1 and n2, and then �nding the biggest number that

occurs on both lists, but Euclid made the following labour-saving observation:

Recursion insight: In general, the GCD of n1 and n2 is the same as the GCD of n2 and (n1 % n2) | the

remainder after dividing n1 by n2.

A special case occurs when n2 is zero | then % doesn't make sense, but the GCD will be n1 (why?). An

extra-special case occurs when both numbers are zero | in that case the GCD is decreed to be 0.

1

http://www.cdf.toronto.edu/~heap/148/W14/Labs/lab01/handout.pdf

This gives you enough background to trace the following code. Python already has a built-in gcd function,

so we are re-inventing it in order to understand recursion. Read this over before following the tracing steps

below.

def csc148_gcd(n1: int, n2: int) -> int:

"""Return greatest common denominator of n1 and n2.

n1, n2 --- non-negative integers

>>> csc148_gcd(0, 0)

0

>>> csc148_gcd(5, 0)

5

>>> csc148_gcd(15, 35)

5

"""

The gcd of n1 and n2 is n1 if n2 is zero, otherwise it is

the same as the gcd of n2 and (n1 % n2)

return csc148_gcd(n2, n1 % n2) if n2 > 0 else n1

Now, trace the following calls in order. It is important to plug in a value when you see a recursive call

you have already solved, rather than tracing any further! We've �lled in the �rst example of what we mean by

\tracing."1

1. Trace csc148 gcd(5, 0)

csc_gcd(5, 0) --> csc148_gcd(n2, n1 % n2) if 0 > 0 else 5 --> 5

2. Trace csc148 gcd(15, 5). Be sure to plug in the value of csc148 gcd(5,0) directly without further tracing

3. Trace csc gcd(35, 15). Be sure to plug in the value of csc148 gcd(15, 5) directly without further tracing

After you've argued with your partner enough, call your TA over and show your work.

Binary representation

In the base 2 number system there are only two possible digits: 0 and 1. These are often called bits (for

binary digits). Each bit is an increasing power of 2 (that is, each bit counts for twice as much as the bit to

the right), so the binary number 101 represents the value:

(1� 4) + (0� 2) + (1� 1) = 5

Here is a table of the �rst 8 non-negative numbers in both binary and decimal.

1Of course, you could secretly ignore this instruction and run the code through the Python visualizer. That would show you

how a particular computing model implements recursion but NOT how humans understand recursion.

2

Decimal Binary string

0 "0"

1 "1"

2 "10"

3 "11"

4 "100"

5 "101"

6 "110"

7 "111"

8 "1000"

Recursion insight: In binary, multiplying by two is the same as adding a zero on the right-hand side (sometimes

called a left-shift). Dividing by two is the same as removing the right-most bit (sometimes called a right-

shift). Taken together, these mean that:

1. The right-most bit of a binary number is "0" for all even binary numbers (two times something), and

"1" for all odd binary numbers.

2. The binary string that precedes the right-most bit of a binary number is just the binary string repre-

senting that number divided by two | integer-divided, or n // 2.

Those two ideas give you the tools to follow this de�nition, but it will certainly help to trace it (below):

def bin_rep(n: int) -> str:

"""Return binary representation of n in base 2

n --- non-negative integer

>>> bin_rep(0) == "0"

True

>>> bin_rep(1) == "1"

True

>>> bin_rep(5) == "101"

True

"""

The binary representation of n is the binary representation of

n // 2 concatenated with the binary representation of n’s last bit

provided n > 1, otherwise it’s just n as a string

return bin_rep(n // 2) + bin_rep(n % 2) if n > 1 else str(n)

Now trace the following calls in order. Again, if you see a recursive call that you have already traced, �ll in

its value directly without further tracing.

1. Trace bin rep(0)

bin_rep(0) --> bin_rep(n // 2) + bin_rep(n % 2) if 0 > 1 else str(0) --> "0"

2. Trace bin rep(1)

3

3. Trace bin rep(2). Be sure to plug in the value of any recursive calls to bin rep(0) or bin rep(1) directly

without further tracing

4. Trace bin rep(5). Be sure to plug in the value of any recursive calls to bin rep(2) directly without any

further tracing

Once you've �nished arguing with your partner, call over your TA and show them your results.

Now, you write the recursive code

In all the exercises below, you should begin as follows:

� Think about what the function you are writing should be called, and write down a few examples. In

fact, do yourself a favour and write the function header and docstring with some examples:

def f(n: int) ->:

"""

Single-sentence describing f

>>> f(3)

expected return of f(3)

...

"""

Both examples below involve recursion on Python lists, and you have seen these in class. Although, of

course, these are di�erent problems, you may want to review:

� Danny's sum of a nested list of numbers

� Danny's depth of a possibly-nested list of numbers

� Dustin's maximum of a nested list, general function for non-empty nested lists

Structured lists

(Student s1 drives, student s2 navigates)

Start Wing in a new directory called lab04 and open a new �le called recursive_examples.py. Before

you start solving the problem below, type:

if __name__ == ’__main__’:

import doctest

doctest.testmod()

. . . at the end of of your �le, so that it will later automatically test all the examples you put in your docstrings.

This is lightweight unit testing.

You have likely used the Python operator "in" to determine whether there is an element in a list with

the same value as an element you're seeking, for example

4

http://www.cdf.toronto.edu/~heap/148/W14/Lectures/danny/W2/rec.py
http://www.cdf.toronto.edu/~heap/148/W14/Lectures/danny/W4/nesting.py
http://www.cdf.toronto.edu/~heap/148/W14/Lectures/dustin/W4/fn_prog_nested_lists.py

>>> 3 in [1, 2, 3, 5]

True

>>> 3 in [1, 2, 5]

False

>>>

You probably have enough intuition now to search a nested list to determine whether it has an equivalent

element. However, such a search would likely take work that is proportional to the size of the list | if

the element is not in the list, you would never really know you were done until you had examined each list

element.

Consider the advantage of particularly structured nested lists, which we'll call SearchLists. These are

de�ned:

SearchList: is either None or a python list of 3 elements

(0) Element 0 is an integer

(1) Element 1 is either None or a SearchList containing integers smaller than Element 0

(2) Element 2 is either None or a SearchList containing integers larger than Element 0

Here's a small example of a SearchList

[5, [2, [1, None, None], [3, None, None]], [6, None, None]]

Use the properties of a SearchList to �gure out how to determine whether a given integer is somewhere

in the SearchList or not. Notice that if a given integer is less than element 0, it is either in element 1

somewhere, or not in the SearchList all. Similarly, if a given integer is more than element 0, it is either in

element 2 somewhere, or not in the SearchList at all.

Recursion insight: The task of searching for a number in either of the "child" SearchLists at element 1 or

element 2 is basically the same as the task of searching the entire SearchList.

Use the ideas to complete the implementation of find_num below. Don't forget to start by writing some

examples in the docstring!

def find_num(SL: ’SearchList’, n: int) -> bool:

"""

Return True if n is in SL, False otherwise

>>> ... some examples, please!

...

...

"""

If you get stuck, call your TA over for some hints.

If you're not stuck, trace through simple examples | un-nested lists | to convince yourself your code

works. Then trace through the next most-complicated example | a list containing at least one un-nested

list | to convince yourself that your code works. Remember to treat the simple cases you've already traced

as black boxes, or already solved problems. Then show your TA your work.

5

Freezing list copies

(Student s2 drives, student s1 navigates)

Usually, when you copy a Python list you store a reference to it. This means that if the original list

changes, your reference leads you to the changed list, and often you want this behaviour.

Sometimes, however, you'd like a copy of all the values of a list where all its elements (and elements of

elements, if the list contains sub-lists) remain as they were at the moment you copied them, not subject

to changes that might be invoked in some other part of your code, or even somebody else's code. Python

provides a deep copy function, copy.deepcopy

Here's an idea. It's not as complete, or di�cult, as copy.deepcopy (for example, it won't deal with lists

that contain references to themselves). But it's a very powerful �rst cut.

Recursion insight: In order to freeze a list, you must freeze any of its elements that are also lists. In other

words, as you create the new, frozen, version of a list,

1. If the corresponding old element is a non-list, simply make a reference to it (this is what normally

happens when we assign expressions in Python)

2. If the corresponding old element is a list, treat it just as you do its enclosing list | produce a new list

by assigning new elements as elements as in these two steps (think recursion!)

Use your ideas to complete the implementation of the function freeze below. Here's a small example of

how it should work:

>>> L1 = [1, [2, 3], 4]

>>> L2 = freeze(L1)

>>> L1 is L2

False

>>> L1[1] is L2[1]

False

>>> L1 == L2

True

>>> L1[1] == L2[1]

True

def freeze(X: object) -> object:

"""

If X is a list, return a new list with equivalent contents,

and recursively treat the contents of X as you treated X itself...

If X is not a list, return X itself

>>> ... don’t forget examples!

...

...

"""

If you're stuck, call your TA over and show your work.

If you're not stuck, trace through simple examples | un-nested lists | to convince yourself your code

works. Then trace through the next most-complicated example | a list containing at least one un-nested

list | to convince yourself that your code works. Remember to treat the simple cases you've already traced

as black boxes, or already solved problems.

Be sure to show your TA your work.

6

Extra, optional problems

If you �nish with the problems above, here are some other ones to try. These are certainly not required for

completing the lab.

� Write a recursive function rev_string(s) that produces the reversal of string s.

� Extend bin_rep(n) to create base_rep(n,k) to give a string representing non-negative integer n in

base k, where 2 � k < 10. In base k, the only digits allowed are f0; : : : ; k � 1g.

� Extend freeze(L) so that it also handles tuples and dictionaries.

� For a list of distinct integers, L, de�ne switches(L) as the number of pairs in L that are not in

increasing order. For example, switches([3,1,2]) returns 2, since (3, 1) and (3,2) are out of order.

Implement the function switches(L) recursively.

7

