
CSC148, Lab #1

week of January 13th, 2014

To earn your lab mark you must seriously participate in the lab. You are graded on participation, not

results. Please note that participation includes showing up on time (10 minutes after the hour, at U of T).

You are encouraged to begin work on this lab once you arrive, and not earlier. If you do happen to �nish

some of it earlier, bring no notes or electronic �les, so that you can participate with a fresh perspective

during the lab. Here's why:

� The goal of the labs is to help you learn by practicing | think of it as a workout session for your brain!

Yes, this is something you could do on your own... But we want stronger students to help out weaker

students, and weaker students to have the bene�t of discussing material with stronger students.

� We also want everyone to get the bene�t of having a TA who can answer your questions. Your TA will

be providing help that will get you to learn at least as much, and in less time than it would take on

your own.

� Stronger partners learn from weaker partners, by teaching them. Weaker partners learn from stronger

partners by asking guidance.

� As a future computer scientist, you'll be working in teams, so now's a good time to start.

Activities for this lab:

1. Preliminaries

(a) Icebreaker

(b) Pair Programming Model

2. Programming

(a) Getting started with Wing

(b) Designing a class

(c) Implementing a class

All of these activities should be very fast to complete, except for the last two: you should spend most of

your time (at least 3/4 of it) on those last two activities.

1



1 Preliminaries

Icebreaker

You will be spending lots of hours with your TA and fellow classmates, so you will start by getting to know

them. Your TA will get you going on this.

Pair programming model

In every lab, you will be working in the pair programming model. Obviously, two programmers (in rare

cases three) are involved, and we call these two people the driver and the navigator. Here are the de�nitions

of the two roles:

driver: The person typing at the keyboard.

navigator: The person (two people, in the rare case of a trio) watching for mistakes, and thinking ahead.

And here is the most important rule for every lab:

� The navigator must never touch the keyboard. (Don't make us enforce this by giving a grade of 0 to

navigators who are found typing!)

Throughout the lab, you will be switching back and forth between the driver and navigator roles. The

instructions will tell you when to do this.

2 Programming

To begin, decide who will start out as driver and who will start out as navigator.

The navigator will read the lab handout and give instructions to the driver about what to do. The navigator

is not allowed to carry out the instructions on their own.

The driver The driver will carry out the navigator's instructions. The driver is not allowed to decide what

to do on their own.

These restrictions are supposed to make it easy to split up the work between the two roles. But they are not

meant to be overly restrictive: you are supposed to discuss what you are doing with your partner throughout

the lab!

During the course of the lab, show your work to your TA frequently, and feel free to ask questions |

that's why they're here! Don't hesitate to also ask other students if you get stuck, and please be generous

in helping others.

Getting started with Wing

Remember, these instructions are meant for the current driver. . .

� Log in to your account.

� Start Wing by double-clicking on its icon.

� Under your home directory, create a new directory named csc148.

2



� Inside this directory, create another directory named lab01 (you can make new directories using the

mkdir command in the terminal, or through the File menu in Wing | create a new �le, then right

click the window that pops up and create a new folder).

� Start the browser and navigate to the lab01 page on the CSC148H1 web site:

http://www.cdf.toronto.edu/~heap/148/W14/Labs/lab01

For each lab, you will �nd handouts and other resources linked from this page.

� Download the �les specs.txt, sample1.txt, and sample2.txt from

http://www.cdf.toronto.edu/~heap/148/W14/Labs/lab01/

and save them in the lab01 subdirectory you created above.

� Open the �le specs.txt in Wing, using the File/Open... menu item. This is the speci�cation for what

you have to do in the rest of this lab.

Before moving on to the next section, show your work to your TA and switch driver and navigator roles. You

should use the same CDF account open on your workstation, since you are working in a pair (perhaps in a

trio).

Designing a class

You've remembered to switch driver and navigator roles, right?. . . OK, once again, these instructions are for

the driver.

� Create a new �le in Wing, using the File/New menu item.

� Perform an object-oriented analysis of the speci�cations in specs.txt. (Object-oriented analysis was

discussed in last week's lectures; also check out How to Think Like a Computer Scientist.

� This will require a fair amount of discussion between the driver and navigator! Don't worry about

getting it completely right: the important thing at this point is to come up with some reasonable

design (even if it's not \perfect"), so that you can move on to the next steps and have a chance to

implement your design. In your new �le:

– For every major noun you obtained from your analysis, write the header for an appropriate class

de�nition, along with a short docstring for the class. (Hint: you can do this with just one new

class: you don't need to try to capture every concept using a class; keep it simple.)

– For every verb you obtained from your analysis, write the header for an appropriate method,

along with a short docstring for the method. (Again, keep it simple by doing this only for the

most important verbs.)

– For every adjective or minor noun you obtained from your analysis, in the docstring for your

class(es), write a description of the attributes shared by instances of the class.

� Save your �le. Name it lab01.py (without the quotes around the name, of course). Using your CDF

username and password, log on to MarkUs at the following URL:

https://markus.cdf.toronto.edu/csc148-2014-01/

3

http://www.cdf.toronto.edu/~heap/148/W14/Labs/lab01
http://www.cdf.toronto.edu/~heap/148/W14/Labs/lab01
http://www.cdf.toronto.edu/~heap/148/W14/Labs/lab01/specs.txt
http://www.cdf.toronto.edu/~heap/148/W14/Labs/lab01/sample1.txt
http://www.cdf.toronto.edu/~heap/148/W14/Labs/lab01/sample2.txt
http://www.cdf.toronto.edu/~heap/148/W14/Labs/lab01/
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
https://markus.cdf.toronto.edu/csc148-2014-01/


Find the Lab 1 submission page, and submit your �le lab01.py. Get help from your partner, other

students, or your TA if you're not sure how to do this or if you run into any problems! Please note

that you aren't graded on what is actually submitted to MarkUs, we just want to verify that you can

indeed make a submission. This guarantees that you know what to do later on, when you need to

submit your work on your own.

Before moving on to the next section, show your work to your TA and switch driver and navigator roles.

Implementing a class, part 1

Once again, these instructions are for the driver.

� Write the body of the initializer for your main class. Your initializer should take one argument (in

addition to self, of course): the name of a text �le. Your initializer will read in the words from the �le,

and store them in some appropriate internal data structure, through one (or more) instance variable(s).

– This will make you review lots of the material from CSC108: working with �les, creating simple

classes, writing functions, simple string manipulations, and basic data structures in Python. Don't

hesitate to make use of the reference How to Think Like a Computer Scientist to read up on any

topic that you've forgotten about.

– In particular, there is a speci�c built-in data structure in Python that would be most suited to

store the collection of key words along with their frequencies. Figure out what this is (discuss it

with your partner and, if necessary, with other students and your TA), before you start to write

code for your __init__ method.

� Save your �le, then log on to https://markus.cdf.toronto.edu/csc148-2014-01 with your account

(not the account of the current navigator that you used to submit previously). Find the Lab 1

submission page, and submit your �le lab01.py. Now both you and your partner have con�rmed that

you are able to submit work on MarkUs!

Before moving on to the next section, show your work to your TA and switch driver and navigator roles.

Implementing a class, part 2

I shouldn't have to remind you at this point, but just in case. . . These instructions are for the driver!

� Write the body of your method that �nds the \top n" words in a collection of key words.

� Save your �le, then submit it on MarkUs.

– Get in the habit of submitting your work multiple times to MarkUs| every time that you complete

some feature in your code. New submissions simply replace old ones, and in addition, MarkUs

keeps track of previous versions so that it is possible to go back to previous versions if needed.

� Write the body of your method that compares two collections of key words and that removes from

both collections every word that appears in both collections.

� Again, save your �le then submit it on MarkUs. At this point, there is one important thing that we

have not reminded you to do. Hint: It involves the other �les you downloaded earlier. . . That's right:

you should be testing your code!

� Create a new �le named lab01tester.py where you will carry out the following tasks:

4

https://markus.cdf.toronto.edu/csc148-2014-01/
http://openbookproject.net/thinkcs/python/english3e/classes_and_objects_I.html
https://markus.cdf.toronto.edu/csc148-2014-01


– from lab01 import NameOfYourClass (where you should replace NameOfYourClass with the ac-

tual name of the class you wrote, of course)

– create two instances of your class: one from �le sample1.txt and the other from �le sample2.txt

– call your comparison method between the two objects (it does not matter which one you use as

the caller)

– call your \top n" method with n = 10 on each object and print the results

� Submit your �le lab01tester.py on MarkUs, to have a record of the work you've done.

� Run your �le to make sure everything works. . . But don't panic if it doesn't!

� If you have to, use the rest of your time to debug your code, with the help of your partner, other

students, and your TA.

Show your work to your TA one last time. Congratulations: you're done with the �rst lab!

A �nal reminder, because it's important: show your work to your TA frequently, and feel free to ask

questions |that's why they're here! Don't hesitate to also ask other students if you get stuck, and please

be generous in helping others.

5


	Preliminaries
	Programming

