
CSC148, Exercise #3

due 9:59 p.m. March 13th, 2014

There are two parts to this exercise. For each part, there is a single �le you must submit | make sure

that you read the submission instructions carefully!

general advice

Before you begin coding, make sure that you understand everything in this handout. Remember that the

point of these exercises is not to get a \working" program by any means necessary | it is to ensure that

you understand how to write the desired code. If you succeed in writing something that works but you do

not understand why, then you have failed, no matter what grade you receive!

In particular, if there is something you do not quite understand, please, for your own sake, take the time

to read the course notes and readings, do some searching on Google and ask on the course forum or during

o�ce hours to make sure you �nd out. You will �nd some related code from Week #6 of the course.

background

Both parts of this exercise concern binary trees. All the keys (that is, the data stored in the tree nodes) are

expected to be integers. Even though the functions in both parts should work on some kinds of non-integer

data, we will use only integers in testing.

You have to write two functions | one each in Part A and Part B. Both functions should assume that

a tree is a Python structure of the following form:

TreeList: is either None or a 3-element list of the following form:

� Element 0 is an integer

� Element 1 is a TreeList

� Element 2 is a TreeList

Here are some examples of TreeLists:

None

[2, None, None]

[3, [7, None, [2, None, None]], [5, None, None]]

1

http://www.cdf.toronto.edu/~heap/148/W14/Lectures/danny/W6/treelist.py


part A

Consider re-constructing a binary tree from its pre-order and in-order traversals. For example, if the lists of

keys resulting from the traversals are [10, 6, 8, 12, 11, 15] (pre-order) and [8, 6, 12, 10, 11, 15] (in-order),

then we can see that:

� The key at the root is 10, because that is how the pre-order traversal begins.

� There are three nodes in the left sub-tree, because there are three keys listed before 10 in the in-order

traversal.

� Many other similar inferences can be made. . .

Submit a �le called e3a.py that de�nes a function make_tree(preorder, inorder). This function

must return a TreeList containing the binary tree whose pre-order and in-order traversal lists are given as

arguments. If either preorder or inorder is empty, then you can assume that both arguments are empty and

you should return None.

We promise not to use test cases containing two keys with the same value. Also, your function can

assume that the parameters represent correct pre-order and in-order traversals of the same binary tree. We

will not test your code with invalid parameters.

Our test programs will access your function by including the line:

from e3a import make_tree

Hint: Think before you code! In particular, work through a number of small (and large) examples by

hand to �gure out exactly how to solve the problem, before you attempt to write the function.

part B

Submit a �le called e3b.py that de�nes a function sum_to_deepest(t) that returns the sum of the keys

from the root to the deepest leaf in TreeList t. If there are two deepest leaves, return the larger sum; if t

is None, return 0. In the tree used as an example in Part A, the sum would be:

10 + 11 + 15 = 36

In this problem, you may �nd it helps to de�ne a helper function that returns both the depth of the

deepest leaf and the sum along the path to that leaf.

Our test programs will access your function by including the line:

from e3b import sum_to_deepest

Hint: Just like for Part A, work through a number of small (and large) examples by hand to �gure out

exactly how to solve the problem, before you attempt to write the function.
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