Stomples:

- today 6-8 pm BA2230 (Help Centre)

- tomorrow 1-1 pm BA2230 (Help Centre)

- tomorrow 1-1 pm BA2230

- Kegertiee Note

- Tomorrow 1-1 pm BA2230

- Spin BA2230

- Sorting big-oh

- String (15+0s)

- week 9

- today 6-8 pm BA2230 (Help Centre)

- tomorrow 1-1 pm BA2230

- Spin BA2230

- Sorting big-oh

- week 9

- Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/148/F13/

416-978-5899

November 6, 2013



### Outline

more big-oh

## running time analysis

Worlst-cas time

Size problem

algorithm's behaviour over large input (size n) is common way to compare performance

constant:  $c \in \mathbb{R}^+$  (some positive number)

logaritkmic: 6 log n

linear cn (probably not the same c)

quadratic:  $cn^2$ )

cubic:  $cn^3$ 

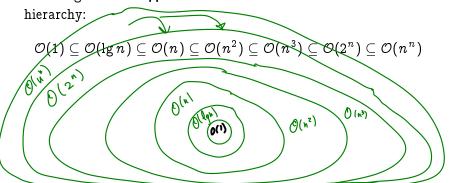
exponential:  $c2^n$ 

horrible:  $cn^n$  or cn!

case: 
$$\lg n$$

this is the number of times you can divide n in half before reaching 1.

- refresher:  $a^b = c$  means  $\log_a c = b$ .
  - ▶ this runtime behaviour often occurs when we "divide and conquer" a problem (e.g. binary search)
  - we usually assume  $\lg n$  (log base 2), but the difference is only a constant:


$$\begin{array}{c|c}
\hline
2^{\log_2 n} & = n = 10^{\log_{10} n} \\
\hline
2^{\log_2 n} & = n = 10^{\log_{10} n}
\end{array}$$

▶ so we just say  $\mathcal{O}(\lg n)$ .



## hierarchy

Since big-oh is an upper-bound the various classes fit into a



# selection sort (review?)

performance

C 
$$\rightarrow$$
 number of steps" on for

X

N + (N-1) + (h-2) + ... + 1

idea: for each position in the list, select the minimum item from that position on

$$\sqrt{\frac{1+2+...+n}{n+n-1+...+(1+n)}} = \frac{n(n+1)}{2} \frac{n^2+n}{2}$$



#### merge sort

idea: divide the list in half, (merge) sort the halves, then merge the sorted results

### quick sort

idea: choose a pivot; decide where the pivot goes with respect to the rest of the list, repeat on the partitions...