These exercises are intended to give you some practice applying the Master Theorem\(^1\) to algorithm design.

1. Consider the following sketch of a divide-and-conquer algorithm \(r(s) \) for reversing a string:

 (a) \(s \) is a string.
 (b) If \(\text{len}(s) < 2 \), return \(s \)
 (c) Else, partition \(s \) into three roughly equal parts: prefix \(s_1 \), suffix \(s_3 \), and mid-section \(s_2 \), and return \(r(s_3) + r(s_2) + r(s_1) \).
 (d) You may assume that the time complexity of string concatenation of \(s_3 + s_2 + s_1 \) is proportional to \(\text{len}(s_3) + \text{len}(s_2) + \text{len}(s_1) \)

 Use the Master Theorem to find the asymptotic time complexity of function \(r \) in terms of \(\text{len}(s) \). Be sure to show all the components of your analysis, including the values of \(a, b \), and \(d \). How does this compare to the complexity of simply copying the string elements in reverse order, using a loop?

2. Describe a ternary version of MergeSort where the list segment to be sorted is divided into three (roughly) equal sub-lists, rather than two. Use the Master Theorem to find the asymptotic time complexity of your ternary MergeSort in terms of the length of the list segment being sorted, and compare/contrast it with the version we analyzed in class. Be sure to show all the components of your analysis, including the values of \(a, b \), and \(d \).

3. Consider the following sketch of bisection algorithm \(\text{bis}(f, a, b, \gamma, \delta) \) to approximate a root of a function:

 (a) \(f : \mathbb{R} \to \mathbb{R} \) is a function, \(a, b \in \mathbb{R} \) with \(f(b) \times f(a) \leq 0 \), \(\gamma, \delta \in \mathbb{R^+} \)
 (b) If \(|b - a| < \gamma \) return \((a + b)/2\).
 (c) If \(|f(a)| < \delta \) return \(a \).
 (d) If \(|f(b)| < \delta \) return \(b \).
 (e) If \(f(a) \times f([a + b]/2) \leq 0 \) return \(\text{bis}(f, a, (a + b)/2, \gamma, \delta) \).
 (f) Otherwise return \(\text{bis}(f, (a + b)/2, b, \gamma, \delta) \)

 Use the Master Theorem to find the asymptotic time complexity of function \(\text{bis} \) in terms of \(|b - a|/\gamma \). Be sure to show all the components of your analysis.

\(^1\)Very abbreviated version on next page...
\[T(n) = \begin{cases}
 k & \text{if } n \leq b \\
 a_1 T(\lfloor n/b \rfloor) + a_2 T(\lceil n/b \rceil) + f(n) & \text{if } n > b
\end{cases} \]

\[T(n) \in \begin{cases}
 \Theta(n^a) & \text{if } a < b^d \\
 \Theta(n^a \log_b n) & \text{if } a = b^d \\
 \Theta(n^{\log_b a}) & \text{if } a > b^d
\end{cases} \]