CSC236 fall 2018

more complexity: mergesort

Danny Heap
heap@cs.toronto.edu / BA4270 (behind elevators)
http://www.teach.cs.toronto.edu/~heap/236/F18/
416-978-5899

Using Introduction to the Theory of Computation,
Chapter 3
Outline

vexing complexity

mergesort

Divide-and-conquer

Notes
Upper bound on $T(n)$

trouble!
recurrence for MergeSort

```
recurrence for MergeSort

MergeSort(A, b, e) -> None:
    if b == e: return
    m = (b + e) / 2
    MergeSort(A, b, m)
    MergeSort(A, m+1, e)
    # merge sorted A[b..m] and A[m+1..e] back into A[b..e]
    B = A[:] # copy A
    c = b
d = m+1
    for i in [b, ..., e]:
        if d > e or (c <= m and B[c] < B[d]):
            A[i] = B[c]
            c = c + 1
        else: # d <= e and (c > m or B[c] >= B[d])
            A[i] = B[d]
            d = d + 1
```
Unwind (repeated substitution)

\[T(n) = 2T(n/2) + n \]
Prove that T is non-decreasing

See Course Notes, Lemma 3.6 Exercise: Prove the recurrence for binary search is non-decreasing...see assignment #2!
Prove \(T \in O(n \lg n) \) for general case

\[
T(n) = T([n/2]) + T([n/2]) + n
\]
divide-and-conquer general case

divide-and-conquer algorithms: partition problem into b
roughly equal subproblems, solve, and recombine:

$$T(n) = \begin{cases}
 k & \text{if } n \leq B \\
 a_1 T(\lceil n/b \rceil) + a_2 T(\lfloor n/b \rfloor) + f(n) & \text{if } n > B
\end{cases}$$

where $b, k > 0$, $a_1, a_2 \geq 0$, and $a = a_1 + a_2 > 0$. $f(n)$ is the
cost of splitting and recombining.
divide-and-conquer Master Theorem

If f from the previous slide has $f \in \Theta(n^d)$, then

$$T(n) \in \begin{cases}
\Theta(n^d) & \text{if } a < b^d \\
\Theta(n^d \log_b n) & \text{if } a = b^d \\
\Theta(n^{\log_b a}) & \text{if } a > b^d
\end{cases}$$
Proof sketch

1. Unwind the recurrence, and prove a result for $n = b^k$

2. Prove that T is non-decreasing

3. Extend to all n, similar to MergeSort