CSC236 fall 2018

more complexity: mergesort
This week's theme: sometimes there is no induction...

Danny Heap
heap@cs.toronto.edu / BA4270 (behind elevators)
http://www.teach.cs.toronto.edu/~heap/236/F18/
416-978-5899

Using Introduction to the Theory of Computation,
Chapter 3
vexing complexity

mergesort

Divide-and-conquer

Notes
Upper bound on $T(n)$

We tried to use induction to prove $T(n) \leq c \log(n)$, but in the induction step we ended up with $T(n) \leq \ldots + 1 - c + c \log(n+1)$

We have no control over c, and thus no way of knowing that $1 - c$ is negative enough to make the entire expression $\leq c \log(n)$.................darn!

Various tricks were suggested. We ended up strengthening the claim to: $T(n) \leq c \log(n-1)$.... which was provable using induction, and itself implies the original claim. However, it feels a bit as if we need to discover a new trick for each bound on each recurrence.

What follows is a single "trick" that will give us Θ bound on many recurrences, provided the recurrence is nondecreasing...
recurrence for MergeSort

A: list of comparables
b: beginning index to sort
e: end index to sort
n = e-b+1

MergeSort(A,b,e) -> None:
 if b == e: return
cost: c
 m = (b + e) / 2
 MergeSort(A,b,m)
 T(ceiling(n/2))
 MergeSort(A,m+1,e)
 T(floor(n/2))

merge sorted A[b..m] and A[m+1..e] back into A[b..e]
B = A[:]
for i in [b,...,e]:
 if d > e or (c <= m and B[c] < B[d]):
 A[i] = B[c]
 c = c + 1
 else:
 A[i] = B[d]
 d = d + 1

T(n) =
 c if n = 1
 T(ceiling(n/2)) + T(floor(n/2)) + n if n > 1

other than the two recursive
calls the remaining code is linear,
plus some constant statements.
I will combine all of these into
one expression --- n --- neglecting
the coefficient, and also neglecting
any constant terms. If you work
through the following slides including
those, it will work out to the same
bound.
Unwind (repeated substitution)

\[T(n) = 2T(n/2) + n \]

suppose \(n \) is a power of 2, so floor\((n/2)\) = ceiling\((n/2)\), i.e. \(n = 2^k \) for some natural number \(k \), then...

\[
= 2(2T(n/2^2) + n/2) + n = 2^2T(n/2^2) + 2n \\
= 2^2(2T(n/2^3) + n/2^2) + 2n = 2^3T(n/2^3) + 3n \\
= \ldots \text{(intuition happening here)} \ldots \text{ prove this conjecture using induction...} \\
= 2^k T(n/2^k) + kn = nc + kn = nc + \lg(n) n = n \lg(n) + cn
\]

This *conjecture* suggests a closed form for special values: power of 2. We want to extend this to upper and lower bounds for other natural numbers \(n \).
Prove that T is non-decreasing

--- you need to do this...

Notation: define $n^* = 2^\{\text{ceiling}(\lg n)\}$ # next highest power of 2

inequality:

$\text{ceiling}(\lg n) - 1 < \lg n \leq \text{ceiling}(\lg n)$ # by definition of ceiling, csc165 exercise

$\implies 2^{\{\text{ceiling}(\lg n) - 1\}} < 2^{\{\lg n\}} \leq 2^{\{\text{ceiling}(\lg n)\}}$

$\implies \frac{n^*}{2} < n \leq n^*$

Examples:

$1^* = 1$

$2^* = 2$

$3^* = 4^* = 4$

$5^* = 6^* = 7^* = 8^* = 8$

$9^* = 10^* = 11^* = 12^* = 13^* = 14^* = 15^* = 16^* = 16$

e tcetera...

See Course Notes, Lemma 3.6 Exercise: Prove the recurrence for binary search is non-decreasing...see assignment #2!
Prove \(T \in O(n \lg n) \) for general case

\[T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n \]

Note: I start the proof with \(d = ??? \) and \(B = ??? \), and in the course of the proof I find conditions on what \(d \) and \(B \) can be.

Let \(d = ??2(2+c) \). Then \(d \in \mathbb{R}^+ \). Let \(B = ??2 \). Then \(B \in \mathbb{N} \).

Let \(n \) be an arbitrary natural number no smaller than \(B \).

Then:

\[
T(n) \leq T(n^*) \quad \text{# since } T \text{ is nondecreasing (must be proved)}
\]

\[
= n^* \lg(n^*) + c n^* \quad \text{# by the still-to-be-proved unwinding conjecture}
\]

\[
\leq 2n \lg(2n) + 2cn \quad \text{# } n > n^*/2 \Rightarrow 2n > n^* \text{ and } \lg(2) = 1
\]

\[
= 2n((1+c) + \lg(n)) \leq 2n((1+c) \lg(n) + \lg(n)) \quad \text{# } n \geq 2 \Rightarrow \lg(n) \geq 1
\]

\[
= 2n \lg(n) (2 + c) \leq d n \lg(n) \quad \text{# } d \geq 2(2+c)
\]
divide-and-conquer general case

k: non-recursive cost, when $n < b$
b: number of almost-equal parts we divide problem into
a_1: number of recursive calls to ceiling, a_2: number of recursive calls to floor, a number of recursive calls
f: cost of splitting, and later recombining, the parts, we HOPE it is polynomial, i.e. n^d

divide-and-conquer algorithms: partition problem into b
roughly equal subproblems, solve, and recombine:

$$T(n) = \begin{cases}
 k & \text{if } n \leq B \\
 a_1 T([n/b]) + a_2 T(\lfloor n/b \rfloor) + f(n) & \text{if } n > B
\end{cases}$$

where $b, k > 0$, $a_1, a_2 \geq 0$, and $a = a_1 + a_2 > 0$. $f(n)$ is the cost of splitting and recombining.
divide-and-conquer Master Theorem

MergeSort: $a = 2, b = 2, d = 1$ \[2 = 2^1\]
binary search: $a = 1, b = 2, d = 0$ \[1 = 2^0\]

If f from the previous slide has $f \in \theta(n^d)$, then

\[
T(n) \in \begin{cases}
\theta(n^d) & \text{if } a < b^d, \text{ so } \log_b a < d \\
\theta(n^d \log_b n) & \text{if } a = b^d, \text{ so } \log_b a = d \\
\theta(n^{\log_b a}) & \text{if } a > b^d, \text{ so } \log_b a > d
\end{cases}
\]
Proof sketch

1. Unwind the recurrence, and prove a result for $n = b^k$

 See "Notes" for details

2. Prove that T is non-decreasing

 Use lemma 3.6 as a template

3. Extend to all n, similar to MergeSort

 ... just as we did in in the big-Oh and \Omega for MergeSort --- no induction!
assume \(n = b^i \), for some natural number \(i \), and assume \(f \in \Theta(n^d) \)

\[
T(n) = a^1T(n/b^1) + cn^d
= a(aT(n/b^2) + c(n/b)^d) + cn^d = a^2T(n/b^2) + (a/b^d)cn^d + cn^d
= a^2(aT(n/b^3) + c(n/b^2)^d) + (a/b^d)cn^d + cn^d
= a^3T(n/b^3) + (a^2/b^{2d})cn^d + (a/b^d)cn^d + cn^d
= a^3(aT(n/b^4) + c(n/b^3)^d) + (a/b^d)^2cn^d + (a/b^d)^1cn^d + (a/b^d)^0cn^d
= a^i k + c n^d \sum_{j=0}^{j=i-1} (a/b^d)^j
= a^i k + c n^d \sum_{j=0}^{j=log_b(n) - 1} (a/b^d)^j
= n^{log_b a} k + c n^d \sum_{j=0}^{j=log_b(n) - 1} (a/b^d)^j
\]

Note that \(b^{xy} = (b^x)^y = (b^y)^x \)

So, \(a^{\{-log_b n\}} = (b^{\{-log_b a\}})^{\{-log_b n\}} = (b^{\{-log_b n\}})^{\{-log_b a\}} = n^{\{-log_b a\}} \)
Proof that $T \in \Omega(n \lg n)$

Let $d \in R^+$. Then $d \geq 1/4$. Let $B = 4$. Then $B \in \mathbb{N}$.
Let n be an arbitrary natural number no smaller than B. Then:

$T(n) \geq T(n^{*}/2)$ \hspace{1cm} \# since T is nondecreasing... you did prove this, didn't you?

$\geq n^{*}/2 \lg(n^{*}/2) + cn^{*}/2$ \hspace{1cm} \# from our unwinding conjecture, which needs to be proved

$\geq n/2 \lg(n/2) + cn/2$ \hspace{1cm} \# $n^{*} \geq n \implies n^{*}/2 \geq n/2$

$= n/2(\lg(n) - \lg(2)) + cn/2 = n/2(c - 1 + \lg(n))$

$= n/2(\lg(n)/2 + \lg(n)/2 - 1 + c)$

$\geq n/2(\lg(n)/2)$ \hspace{1cm} \# since $n \geq 4$ then $\lg(n)/2 \geq 1$ and $c > 0$

$\geq d \cdot n \cdot \lg(n)$ \hspace{1cm} \# since $d = 1/4$