CSC236 fall 2018
languages: the last words

Danny Heap
heap@cs.toronto.edu / BA4270 (behind elevators)
http://www.teach.cs.toronto.edu/~heap/236/F18/
416-978-5899

Using Introduction to the Theory of Computation,
Chapter 7
Outline

non-regular languages

need... more... power

notes
pumping lemma (see course notes, page 234)

If $L \subseteq \Sigma^*$ is a regular language, then there is some $n_L \in \mathbb{N}$ (n_L depends on L) such that if $x \in L$ and $|x| \geq n_L$ then:

- $\exists u, v, w \in \Sigma^*, x = uvw$
- $|v| > 0$
- $|uv| \leq n_L$
- $\forall k \in \mathbb{N}, uv^kw \in L$

idea: if machine $M(L)$ has $|Q| = n_L$, $x \in L \land |x| \geq n_L$, denote $q_i = \delta^*(q_0, x[:i])$, so x “visits” q_0, q_1, \ldots, q_L with the first $n_L + 1$ prefixes of x... so there is at least one state that x “visits” twice (pigeonhole principle)
consequences of regularity

How about \(L = \{1^n 0^n \mid n \in \mathbb{N}\} \)
another approach...Myhill-Nerode
Consider how many different states $1^k \in \text{Prefix}(L)$ end up in...for various k
“real life” consequences...

- The proof of irregularity of \(L = \{1^n0^n | n \in \mathbb{N}\} \) suggests a proof of irregularity of \(L' = \{x \in \{0, 1\}^* | x \text{ has an equal number of 1s and 0s}\} \) (explain... consider \(L' \cap L(1^*0^*) \))

- A similar argument implies the irregularity of \(L'' = \{x \in \Sigma^* | x \text{ has an equal number of } \langle \text{div} \rangle \text{ as of } \langle /\text{div} \rangle \text{ substrings}\} \), where \(\Sigma = \{a, ..., z, \langle, \rangle, /\} \)... so html cannot be checked by a DFSA!

- What about \(L''' = \{(w, w) | w \in \{0, 1\}^*\}\)? What does this say about whether an FSA can check whether a pair of strings is equal?
How about $L = \{ w \in \Sigma^* \mid |w| = p \land p \text{ is prime} \}$
a humble admission...

- at any point in time my computer, and yours, are DFSAs

- do the arithmetic...

- however, we could dynamically add/access increasing stores of memory
PDA

- DFSA plus an infinite stack with finite set of stack symbols. Each transition depends on the state, (optionally) the input symbol, (optionally) a pop from stack
- each transition results in a state, (optional) push onto stack

design a PDA that accepts $L = \{1^n0^n \mid n \in \mathbb{N}\}$.
yet more power

- (informally) linear bounded automata: finite states, read/write a tape of memory proportional to input size, tape moves are one position L-to-R

- (informally) turing machine: finite states, read/write an infinite tape of memory, tape moves are one position L-to-R

Each machine has a corresponding grammar (e.g. FSAs↔regexes (right-linear grammar))
review suggestions

- three hours, pencils, pens, erasers, caffeine, sugar
- I will announce some office hours during study period
- **review**: lecture slides, tutorial exercises and solutions, assignments and solutions
- **invent** questions similar to those in the previous bullet point, vary and extend the questions
- **form**: study groups to challenge each other
- **ask**: me about things that are still unclear
- **if you still have time**: look at previous exams for presentation and length