CSC236 fall 2018
languages: the last words

Danny Heap
heap@cs.toronto.edu / BA4270 (behind elevators)
http://www.teach.cs.toronto.edu/~heap/236/F18/
416-978-5899

Using Introduction to the Theory of Computation,
Chapter 7
Outline

non-regular languages

need... more... power

notes
pumping lemma (see course notes, page 234)

If $L \subseteq \Sigma^*$ is a regular language, then there is some $n_L \in \mathbb{N}$ (n_L depends on L) such that if $x \in L$ and $|x| \geq n_L$ then:

- $\exists u, v, w \in \Sigma^*, x = uvw$
- $|v| > 0$
- $|uv| \leq n_L$
- $\forall k \in \mathbb{N}, uv^k w \in L$

idea: if machine $M(L)$ has $|Q| = n_L$, $x \in L \land |x| \geq n_L$, denote $q_i = \delta^*(q_0, x[: i])$, so x “visits” $q_0, q_1, ..., q_L$ with the first $n_L + 1$ prefixes of x... so there is at least one state that x “visits” twice (pigeonhole principle)
Proof, by contradiction, that L is not regular.
Assume, for sake of contradiction, that L is regular, so there is some FSM M that accepts L. Then the number of states in M is some positive integer m.

consider the string 1^m0^m. By pumping lemma, $1^m0^m = uvw$ such that $|v| > 0$, $|uv| \leq m$ and for all $k \in \mathbb{N}$, $uv^km \in L$. But then uv^0w is in L, but uv^0w has $m - |v|$ 1s and m 0s.

Contradiction.
another approach... Myhill-Nerode

Consider how many different states $1^k \in \text{Prefix}(L)$ end up in... for various k

Proof by contradiction. Assume L is regular, so it’s accepted by M with $m = |Q|$. Then the prefixes $1^0, 1^1, 1^2, ..., 1^m$ are sent to just m different states, so (pigeonhole principle) there must exist $0 \leq h < i \leq m$ such that $\delta^*(q_0, 1^h) = \delta^*(q_0, 1^i)$. But then we know that $\delta^*(q_0, 1^h0^h)$ is an accepting state, but $\delta^*(q_0, 1^i0^h)$ is thus an accepting state. contradiction: $i \not= h$, and so 1^i0^h is not in L.

Since assuming that L is regular leads to a contradiction, that assumption is false.
“real life” consequences...

- the proof of irregularity of \(L = \{1^n0^n|n \in \mathbb{N}\} \) suggests a proof of irregularity of
 \(L' = \{x \in \{0, 1\}^* | x \) has an equal number of 1s and 0s\}
 (explain... consider \(L' \cap L(1*0*) \))

- a similar argument implies the irregularity of
 \(L'' = \{x \in \Sigma^* | \)
 \(x \) has an equal number of \(<div> \) as of \(</div> \) substrings\},
 where \(\Sigma = \{a, ..., z, <, />, /\} \)... so html cannot be checked by a DFSA!

- what about \(L''' = \{(w, w) | w \in \{0, 1\}^*\}? \) What does this say about whether an FSA can check whether a pair of strings is equal?
How about $L = \{ w \in \Sigma^* \mid |w| = p \land p \text{ is prime}\}$

Prove it not regular by contradiction. For the sake of contradiction, assume L is regular. So, there must be some machine M with $|Q| = m \in \mathbb{N}^+$ states that accepts it.

Since there are infinitely many primes, there always a prime number (several, actually) larger than m. Let p be a prime with $p > m$, so $1^p \in L$, by definition.

Also $1^p = uvw$, where $|uv| \leq m$, and $|v| > 0$ and $uv^kw \in L$, for any natural number k. So $|uvw| = p$, a prime, but also $|uw|$ must be prime, also $|uvvvvvw|$ must be prime. But $|uv^{1+p}w| = p + p|v| = (1+|v|)p \rightarrow$ Contradiction!, that string has composite length!
a humble admission...

- at any point in time my computer, and yours, are DFSAs

- do the arithmetic... figure out the number of states in my machine... crashed!

- however, we could dynamically add/access increasing stores of memory also, most "practical" problems fit in our little DFSAs
PDA

- DFSA plus an infinite stack with finite set of stack symbols. Each transition depends on the state, (optionally) the input symbol, (optionally) a pop from stack
- each transition results in a state, (optional) push onto stack

design a PDA that accepts $L = \{1^n0^n \mid n \in \mathbb{N}\}$. see vassos's note page 252

CFG for the same thing

$S \rightarrow 1S0$
$S \rightarrow ""

yet more power

- (informally) linear bounded automata: finite states, read/write a tape of memory proportional to input size, tape moves are one position L-to-R

- (informally) turing machine: finite states, read/write an infinite tape of memory, tape moves are one position L-to-R

Each machine has a corresponding grammar (e.g. FSAs↔regexes (right-linear grammar))
review suggestions

- three hours, pencils, pens, erasers, caffeine, sugar
- I will announce some office hours during study period
- **review**: lecture slides, tutorial exercises and solutions, assignments and solutions
- **invent** questions similar to those in the previous bullet point, vary and extend the questions
- **form**: study groups to challenge each other
- **ask**: me about things that are still unclear
- **if you still have time**: look at previous exams for presentation and length