CSC236 fall 2018
machines, expressions: equivalence

Danny Heap
heap@cs.toronto.edu / BA4270 (behind elevators)
http://www.teach.cs.toronto.edu/~heap/236/F18/
416-978-5899

Using *Introduction to the Theory of Computation*,
Chapter 7
regular expressions, regular languages

notes
non-deterministic FSA (NFSA) example

FSA that accepts $L((010 + 01)^*)$
NFSAs are real
...you can always convert them to DFSA

Use subset construction, notes page 219 if $\Sigma = \{0, 1\}$, the construction is, roughly

- start at the start state combined with any states reachable from start with ϵ-transitions
- if there are any 1-transitions from this new combined start state, combine them into a new state
- there are any 0-transitions from this new combined start, combine them into a new state
- repeat for every state reachable from the start...
NFSA that accepts $L((0 + 10)(0 + 10)^*)$
construct the corresponding DFSA...
NFSA that accepts $\text{Rev}(L((0 + 10)(0 + 10)^*))$

construct the corresponding DFSA...
FSAs, regexes are equivalent:
\[L = L(M) \] for some DFSA \(M \) \(\Leftrightarrow \) \[L = L(M') \] for some NFSA \(M' \) \(\Leftrightarrow \)
\[L = L(R) \] for some regular expression \(R \)

step 1.0: convert \(L(R) \) to \(L(M') \)

start with \(\emptyset, \epsilon, a \in \Sigma \)
equivalence...

step 1.5: convert $L(R)$ to $L(M')$:
union, concatenation, stars
equiv alence...

step 2: convert $L(M')$ to $L(M)$

use subset construction

there could be $2^{|Q|}$ subsets to consider, but often many are unreachable and may be ignored...
FSAs, regexes are equivalent:

\[L = L(M) \text{ for some DFSA } M \iff L = L(M') \text{ for some NFSA } M' \iff L = L(R) \text{ for some regular expression } R \]

step 3: convert \(L(M) \) to \(L(R) \), eliminate states
equiv\alence\dots

state elimination recipe for state q

1. $s_1 \ldots s_m$ are states with transitions to q, with labels $S_1 \ldots S_m$
2. $t_1 \ldots t_n$ are states with transitions from q, with labels $T_1 \ldots T_n$
3. Q is any self-loop on q
4. Eliminate q, and add (union) transition label $s_i Q^* T_j$ from s_i to t_j.
Regular languages are those that can be denoted by a regular expression or accept by an FSA. In addition:

- L regular $\Rightarrow \overline{L}$ regular

- L regular $\Rightarrow Rev(L)$ regular
pumping lemma (see course notes, page 234)

If $L \subseteq \Sigma^*$ is a regular language, then there is some $n_L \in \mathbb{N}$ (n_L depends on L) such that if $x \in L$ and $|x| \geq n_L$ then:

- $\exists u, v, w \in \Sigma^*, x = uvw$
- $|v| > 0$
- $|uv| \leq n_L$
- $\forall k \in \mathbb{N}, uv^kw \in L$

idea: if machine $M(L)$ has $|Q| = n_L$, $x \in L \land |x| \geq n_L$, denote $q_i = \delta^*(q_0, x[: i])$, so x “visits” $q_0, q_1, ..., q_L$ with the first $n_L + 1$ prefixes of x... so there is at least one state that x “visits” twice (pigeonhole principle)
consequences of regularity

How about $L = \{1^n0^n \mid n \in \mathbb{N}\}$
How about $L = \{ w \in \Sigma^* \mid |w| = p \land p \text{ is prime} \}$