spoiler alert: we've back, forth, back again between FSAs and regexes. Punchline: they accept/denote the same set of languages. Second punchline: some languages are neither accepted/denoted

CSC236 fall 2018
machines, expressions: equivalence

Danny Heap
heap@cs.toronto.edu / BA4270 (behind elevators)
http://www.teach.cs.toronto.edu/~heap/236/F18/ 416-978-5899

Using Introduction to the Theory of Computation, Chapter 7
Outline

regular expressions, regular languages

notes
non-deterministic FSA (NFSA) example
FSA that accepts $L((010 + 01)^*)$

from start, diagram transitions to *sets of states* that could be reached. Any set of states that contains at least one accepting state becomes an accepting state. The new machine is deterministic --- DFSA.
NFSAs are real

...you can always convert them to DFSA

Use subset construction, notes page 219 if $\Sigma = \{0, 1\}$, the construction is, roughly

- start at the start state combined with any states reachable from start with ε-transitions
- if there are any 1-transitions from this new combined start state, combine them into a new state
- there are any 0-transitions from this new combined start, combine them into a new state
- repeat for every state reachable from the start...
NFSA that accepts $L((0 + 10)(0 + 10)^*)$

construct the corresponding DFSA...
NFSA that accepts $\text{Rev}(L((0 + 10)(0 + 10)^*))$

construct the corresponding DFSA...

1. swap start and accepting state (epsilon if multiple starts)
2. reverse all transitions

I re-named the states to D (was A|B) E (was A) and F (was C) to reduce confusing notation during the subset construction...
FSAs, regexes are equivalent:

\[L = L(M) \] for some DFSA \(M \) \iff \[L = L(M') \] for some NFSA \(M' \) \iff
\[L = L(R) \] for some regular expression \(R \)

step 1.0: convert \(L(R) \) to \(L(M') \)

for concreteness, let's say \(\Sigma = \{0, 1\} \)

start with \(\emptyset, \varepsilon, a \in \Sigma \)

\(L(\emptyset) = L(M) \), where \(M = \)

\(L(\varepsilon) = L(M) \), where \(M = \)

\(L(0) = L(M) \), where \(M = \)
equivalence...

step 1.5: convert $L(R)$ to $L(M')$: union, concatenation, stars

Assume $r_1, r_2 \in \text{RE}$, and that $L(r_1) = L(M_1), L(r_2) = L(M_2)$, where M_1, M_2 are FSA

$L(r_1 + r_2) = L(r_1) \cup L(r_2) = L(M)$ either uses the product construction OR

$L(r_1r_2) = L(r_1)L(r_2) = L(M)$

$L(r_1^*) = L(r_1)^* = L(M)$, where M
equivalence...

step 2: convert $L(M')$ to $L(M)$

use subset construction

there could be $2^{|Q|}$ subsets to consider, but often many are unreachable and may be ignored...
FSAs, regexes are equivalent:

$L = L(M)$ for some DFSA $M \Leftrightarrow L = L(M')$ for some NFSA $M' \Leftrightarrow L = L(R)$ for some regular expression R

step 3: convert $L(M)$ to $L(R)$, eliminate states

accepts:
""
0000000
11
1111
1001
110

eliminate state 1

eliminate state 2

our regex:
$(0+11+10(1+00)^*01)^*$
equivalence...

state elimination recipe for state \(q \)

label transitions with *regexes* rather than symbols

1. \(s_1 \ldots s_m \) are states with transitions to \(q \), with labels \(S_1 \ldots S_m \)
2. \(t_1 \ldots t_n \) are states with transitions from \(q \), with labels \(T_1 \ldots T_n \)
3. \(Q \) is any self-loop on \(q \)
4. Eliminate \(q \), and add (union) transition label \(S_i Q^* T_j \) from \(s_i \) to \(t_j \).
Regular languages are those that can be denoted by a regular expression or accept by an FSA. In addition:

- L regular $\Rightarrow \overline{L}$ regular

$L(M) = L(1)$, so M:

- L regular $\Rightarrow Rev(L)$ regular

We did an example earlier...
pumping lemma (see course notes, page 234)

If \(L \subseteq \Sigma^* \) is a regular language, then there is some \(n_L \in \mathbb{N} \) (\(n_L \) depends on \(L \)) such that if \(x \in L \) and \(|x| \geq n_L \) then:

- \(\exists u, v, w \in \Sigma^*, x = uvw \)
- \(|v| > 0 \)
- \(|uv| \leq n_L \)
- \(\forall k \in \mathbb{N}, uv^k w \in L \)

idea: if machine \(M(L) \) has \(|Q| = n_L \), \(x \in L \land |x| \geq n_L \), denote \(q_i = \delta^*(q_0, x[\cdot:i]) \), so \(x \) “visits” \(q_0, q_1, \ldots, q_L \) with the first \(n_L + 1 \) prefixes of \(x \ldots \) so there is at least one state that \(x \) “visits” twice (pigeonhole principle)

if it accepts \(uvw \), it also accepts \(uw, uvvw, uvvvvvwwv, \) etc.
consequences of regularity

How about $L = \{1^n0^n \mid n \in \mathbb{N}\}$
How about $L = \{w \in \Sigma^* \mid |w| = p \land p \text{ is prime}\}$
notes