CSC236 fall 2018

languages: definitions
...plus some regular expressions...

Danny Heap
heap@cs.toronto.edu / BA4270 (behind elevators)
http://www.teach.cs.toronto.edu/~csc236h/fall/
416-978-5899

Using Introduction to the Theory of Computation, Chapter 7
Outline

formal languages

regular expressions

NFSAs

notes
some definitions

\[\Sigma = \text{unicode}\]

atomic (can't break apart), bounds the necessary resources

alphabet: finite, non-empty set of symbols, e.g. \(\{a, b\}\) or \(\{0, 1, -1\}\). Conventionally denoted \(\Sigma\).

could be infinitely many strings, but each has a finite length

string: finite (including empty) sequence of symbols over an alphabet: abba is a string over \(\{a, b\}\).
Convention: \(\epsilon\) is the empty string, never an allowed symbol, \(\Sigma^*\) is set of all strings over \(\Sigma\).

language: Subset of \(\Sigma^*\) for some alphabet \(\Sigma\). Possibly empty, possibly infinite subset. E.g. \(\emptyset\), \(\{aa, aaa, aaaaa, ...\}\).

N.B.: \(\emptyset \neq \{\epsilon\}\). \(|\emptyset| = 0 \neq 1 = |\{\varepsilon\}|\)
Many problems can be reduced to languages: logical formulas, identifiers for compilation, natural language processing. Key question is recognition:

Given language L and string s, is $s \in L$?

is s accepted by the FSA that accepts L?

Languages may be described either by descriptive generators (for example, regular expressions) or procedurally (e.g. finite state automata)
more notation — string operations

string length: denoted $|s|$, is the number of symbols in s, e.g. $|bba| = 3$. $|\varepsilon| = 0$

$s = t$: if and only if $|s| = |t|$, and $s_i = t_i$ for $0 \leq i < |s|$.

s^R: reversal of s is obtained by reversing symbols of s, e.g. $1011^R = 1101$.

most commonly

$s t$ or $s \circ t$: concatenation of s and t — all characters of s followed by all those of t, e.g. $bba \circ bb = bbabb$.

s^k: denotes s concatenated with itself k times. E.g., $ab^3 = ababab$, $101^0 = \varepsilon$.

Σ^n: all strings of length n over Σ, Σ^* denotes all strings over Σ. $\Sigma^0 = \{\varepsilon\}$
language operations

\overline{L}: Complement of L, i.e. $\Sigma^* - L$. If L is language of strings over $\{0, 1\}$ that start with 0, then \overline{L} is the language of strings that begin with 1 plus the empty string.

$L \cup L'$: union $\quad = L' \cup L$

$L \cap L'$: intersection $\quad = L' \cap L$

$L - L'$: difference $\quad != L' - L$

$\text{Rev}(L)$: $\quad = \{ s^R : s \in L \}$ not necessarily equal to L

concatenation: LL' or $L \circ L' = \{ rt | r \in L, t \in L' \}$. Special cases $L\{\varepsilon\} = L = \{\varepsilon\}L$, and $L\{} = {} = {}L.$
more language operations

exponentiation: \(L^k \) is concatenation of \(L \) \(k \) times. Special case,
\(L^0 = \{ \varepsilon \} \), including \(L = \{ \} \) (1)

\(\forall x \in \mathbb{R}, x \neq 0 \Rightarrow x^0 = 1 \), \(\forall x \in \mathbb{R}^+, 0^x = 0 \)

analogous to \(0^0 = 1 \) --- See Donald Knuth

\(\emptyset^2 = \{ \varepsilon \} \{ \} \{ \} = \{ \} \{ \} \)

\(\forall x \in \mathbb{R}, x \neq 0 \Rightarrow x^0 = 1 \), \(\forall x \in \mathbb{R}^+, 0^x = 0 \)

Kleene star: \(L^* = L^0 \cup L^1 \cup L^2 \cup \ldots \)

\(\emptyset^* = \{ \varepsilon \} \{ \varepsilon \} = \{ \varepsilon \} \{ \varepsilon \} \)
another way to define languages

In addition to the language accepted by DFSA \(L(M) \) and set description \(L = \{ \ldots \} \).

regular expressions are themselves a language over --- what alphabet?
each string in the RE language denotes a language

Definition: The regular expressions (regexps or REs) over alphabet \(\Sigma \) is the smallest set such that:

1. \(\emptyset, \varepsilon, \) and \(x, \) for every \(x \in \Sigma \) are REs over \(\Sigma \)
2. if \(T \) and \(S \) are REs over \(\Sigma \), then so are:
 - \((T + S) \) (union) — lowest precedence operator
 - \((TS) \) (concatenation) — middle precedence operator
 - \(T^* \) (star) — highest precedence

\(\text{e.g. if } \Sigma = \{a, b\}, \text{ then basis } \emptyset, \varepsilon, a, b \)
regular expression to language:

The \(L(R) \), the language denoted (or described) by \(R \) is defined by structural induction:

Basis: If \(R \) is a regular expression by the basis of the definition of regular expressions, then define \(L(R) \):

- \(L(\emptyset) = \emptyset \) (the empty language — no strings!)
- \(L(\varepsilon) = \{\varepsilon\} \) (the language consisting of just the empty string)
- \(L(x) = \{x\} \) (the language consisting of the one-symbol string)

Induction step: If \(R \) is a regular expression by the induction step of the definition, then define \(L(R) \):

- \(L(S + T) = L(S) \cup L(T) \)
- \(L(ST) = L(S)L(T) \)
- \(L(T^*) = L(T)^* \)
regexp examples

- csc207 regex practice
- regex crosswords
- command-line REs

- \[L(0 + 1) = \{0, 1\} = L(0) \cup L(1) \]
- \[L((0 + 1)^*) \text{ All binary strings over } \{0, 1\} = L(0+1)^* \]
- \[L((01)^*) = \{\epsilon, 01, 0101, 010101, \ldots\} \]
- \[L(0^*1^*) \text{ 0 or more 0s followed by 0 or more 1s.} \]
- \[L(0^* + 1^*) \text{ 0 or more 0s or 0 or more 1s.} \]
- \[L((0 + 1)(0 + 1)^*) \text{ Non-empty binary strings over } \{0, 1\}. \]
example

$L = \{ x \in \{0,1\}^* | x \text{ begins and ends with a different bit} \}$

\[L' = L((1(0+1)*0)+(0(0+1)*1)) \]

To show that $L = L'$, must show $L \subseteq L'$ and $L' \subseteq L$

prove $L' \subseteq L$:
Let $s \in L'$. Then $s \in L((1(0+1)*0)+(0(0+1)*1)) = L(1(0+1)*0) \cup L(0(0+1)*1)$. WLOG, assume $s \in L(1(0+1)*0)$, since the same argument works for the other case by interchanging 0s and 1s.

Since $s \in L(1(0+1)*0) = L(1)L(0+1)*L(0)$, $s = tuv$, where $t = 1$, $v = 0$, and $u...$ well we don't care about u. So the first (and only) character of t (and hence s) is 1, and the last (and only) character of v (hence s) is 0. So $s \in L$.

prove $L \subseteq L'$: Let $s \in L$. Then either s starts with 0, ends with 1, or starts with 1, ends with 0. WLOG assume s starts with 0, ends with 1. Then $s = 0u1$, where $u \in L(0+1)*$, so $s \in L(0)L(0+1)*L(1) \subseteq L(0)L(0+1)*L(1) \cup L(1(0+1)*0) = L'$

QED
RE identities
some of these follow from set properties... others require some proof (see 7.2.5 example)

- communitativity of union: \(R + S \equiv S + R \)
- associativity of union: \((R + S) + T \equiv R + (S + T) \)
- associativity of concatenation: \((RS)T \equiv R(ST) \)
- left distributivity: \(R(S + T) \equiv RS + RT \)
- right distributivity: \((S + T)R \equiv SR + TR \)
- identity for union: \(R + \emptyset \equiv R \)
- identity for concatenation: \(R\epsilon \equiv R \equiv \epsilon R \)
- annihilator for concatenation: \(\emptyset R \equiv \emptyset \equiv R\emptyset \)
- idempotence of Kleene star: \((R^*)^* \equiv R^* \)
non-deterministic FSA (NFSA) example

FSA that accepts \(L((010 + 01)^* \)

convenient!
non-deterministic FSA (NFSA) example

FSA that accepts $L((010 + 01)^*)$
NFSAs are real

...you can always convert them to DFSA

Use subset construction, notes page 219
notes