Term Test-Sample Solutions

CSC165H1 / LEC0101/0201 - Danny Heap
November 21st, 1:40 OR 3:10 - Duration: 80 minutes
Question 1. short answers [9 marks]
Part (a) step counting [1 MARK]
Read over function $f(n)$ below and state how many times the loop iterates when $f(11)$ is called.

```
def f(n: int) -> int:
    """Assume i >= 0"""
    i = 5
    while i < 5 * n:
        i = i * i
```

sample solution: 2 times

Part (b) i in terms of s [1 MARK]

For function $f(n)$ above, find a formula for $i(s)$, the value of i after s iterations of the loop body.
sample solution: $i(s)=5^{2^{s}}$

Part (c) step counting formula [1 MARK]

Use your work in the previous parts to find a formula for the exact number of iterations of the loop if $f(n)$ is called, for some positive natural number n. Use floor or ceiling to make sure that your formula specifies the appropriate integer.
sample solution: $\left\lceil\log _{2}\left(\log _{5}(n)+1\right)\right\rceil$
Part (d) asymptotic comparisons [3 MARKS]
Let $f(n)=5 n^{3}+2 n$ and let $g(n)=16 \log (n)$. Circle each true statement below. Do nothing to false statements. You gain points for each statement correctly circled, or correctly left uncircled.

$$
\begin{array}{lll}
f(n)+g(n) \in \Theta(f(n)) & g(n) \in \Theta(f(n)+g(n)) & f(n) \cdot g(n) \in O(g(n)) \\
f(n) \in O(f(n) \cdot g(n)) & f(n) \cdot g(n) \in \Omega\left(2^{n}\right) & 2^{n} \in \Omega(f(n) \cdot g(n))
\end{array}
$$

sample solution: Circle only $f(n)+g(n) \in \Theta(f(n)), f(n) \in O(f(n) \cdot g(n))$, and $2^{n} \in \Omega(f(n) \cdot g(n))$.

Part (e) binary numbers [3 MARKS]

Theorem 4.2 of the course notes guarantees a unique binary representation with the left-most bit being 1 , for each positive natural number. Beneath each quantity below, write the number of bits (binary digits) in its unique binary representation.

$$
2^{15} \quad 2^{15}-1 \quad 4 \times\left(2^{15}-1\right)
$$

sample solution: 2^{15} has 16 bits, $2^{15}-1$ has 15 bits, $4 \times\left(2^{15}-1\right)$ has 17 bits.

Question 2. algorithm analysis [11 MARKS]

Read over function has_mod_3. Assume that integer_list contains only entries from $\{0,1,2\}$, with duplicates allowed. Define n as the length of integer_list and $\overline{W C}_{\text {has_mod_3 }}(n)$ as the largest number of "steps," for all integer_list of length n.

In what follows, if has_mod_3 returns True right after examining k entries in integer_list, count this as k steps. If has_mod_3 returns False after examining all n entries in integer_list, count this as $n+1$ steps.

```
def has_mod_3(integer_list) -> bool:
    for i in range(len(integer_list)):
        if integer_list[i] % 3 == 0:
            return True
    return False
```

Part (a) lower bound [2 MARKS]
Find and prove a lower bound, $L(n)$ for $W C_{\text {has_mod_3 }}(n)$. Your lower bound should be in the same asymptotic complexity class as the upper bound you find in the next question.
sample solution: $L(n)=n$ is a lower bound on $W C_{\text {has_mod_3 }}{ }^{3}(n)$, the worst run-time for inputs of size n with entries taken from $\{0,1,2\}$.
header: Let $n \in \mathbb{N}$. Let $\mathbf{L L}$ the list where each of the n entries is a 1 . I want to show that has_mod_3(LL) takes at least n steps.
body: has_mod_3(LL) examines all n entries from $\mathbf{L L}$ at a cost of n steps. This means $W C_{\text {has_mod_3 }}(n) \geq L(n)$

Part (b) upper bound [2 MARKS]

Find and prove an upper bound, $U(n)$ for $W C_{\text {has_mod_3 }}(n)$. Your upper bound should be in the same asymptotic complexity class as the lower bound you found in the previous question.
sample solution: $U(n)=n+1$ is an upper bound on the run-times of has_mod_3(x) for all lists x of length n with entries taken from $\{0,1,2\}$.
header: Let $n \in \mathbb{N}$. Let $\mathbf{A L}$ be an arbitrary list consisting of n elements from $\{0,1,2\}$. I want to show that has_mod_3(AL) takes no more than $n+1$ steps.
body: has_mod_3(AL) examines no more than n entries from AL and may then return False, for a total of $n+1 \leq U(n)$ steps. Since AL is arbitrary this means $W C_{\text {has_mod_3 }}(n) \leq U(n)$

Term Test-Sample Solutions
CSC165H1 / LEC0101/0201 - Danny Heap
November 21st, 1:40 OR 3:10 - Duration: 80 minutes

Part (c) average for length 3 [3 MARKS]

What is the average number of steps taken by has _mod _3 for lists of length 3 ? Show your calculations, and explain them, to arrive at this result. Assume each input list is equally likely.
sample solution: The number of lists that have 0 in the first position, and hence return True after one step is $1 \times 3 \times 3$ or 9 . The number of lists that have 1 or 2 in their first position, and 0 in their second position, and hence return True after 2 steps is $2 \times 1 \times 3$ or 6 . The number of lists that have some combination of 1 and 2 in their first two positions and 0 in their third position is $2 \times 2 \times 1$ or 4 . Finally, the number of lists that have no 0 s and take $n+1$ steps is $2 \times 2 \times 2$ or 8 . The total number of lists of length 3 is $3 \times 3 \times 3$ or 27 . Thus the average number of steps is:

$$
\frac{1 \times 9+2 \times 6+3 \times 4+4 \times 8}{27}=\frac{65}{27}, \text { a bit more than } 2 \text { steps }
$$

Part (d) average for length \boldsymbol{n} [4 MARKS]

Find a closed formula for the average number of steps taken by has_mod_3 for lists of length n. Show your calculations to arrive at this result. You may find the following formula helpful (although you are not required to use it):

$$
\sum_{i=0}^{i=n-1} i r^{i}=\frac{n r^{n}}{r-1}+\frac{r-r^{n+1}}{(r-1)^{2}}
$$

Assume each input list is equally likely.
sample solution: In general, if the first 0 is encountered at position i there there are $i-1$ positions filled with 1 s and 2 s , so 2^{i-1} possibilities, and $n-i$ positions filled with $1 \mathrm{~s}, 2 \mathrm{~s}$, or 0 s , so 3^{n-i} possibilities. The lists with no 0 s fill all positions with 1 s and 2 s , so 2^{n} possibilities. Summing up the number of steps taken by each subset of lists, and dividing by 3^{n} total lists gives:

$$
\begin{aligned}
\left(1 / 3^{n}\right)\left(\sum_{i=1}^{n} i 2^{i-1} 3^{n-i}\right)+\frac{2^{n}(n+1)}{3^{n}}= & \left(\sum_{i=1}^{n} i 2^{-1} \frac{2^{i}}{3^{i}}\right)+\left(\frac{2}{3}\right)^{n}(n+1) \\
& \text { \# factor out } 3^{n} \\
= & (1 / 2)\left(\sum_{i=0}^{n} i \frac{2^{i}}{3^{i}}\right)+\left(\frac{2}{3}\right)^{n}(n+1) \\
& \text { \# factor out } 1 / 2, \text { add } 0 \text { to summation } \\
= & (1 / 2)\left(\frac{(n+1)(2 / 3)^{n+1}}{(2 / 3)-1}+\frac{(2 / 3)-(2 / 3)^{n+2}}{((2 / 3)-1)^{2}}\right)+\left(\frac{2}{3}\right)^{n}(n+1) \\
& \# \text { substitute } n \text { with } n+1 \text { in formula, so it applies to this case } \\
= & (1 / 2)\left(\frac{(n+1)(2 / 3)^{n+1}}{-(1 / 3)}+\frac{(2 / 3)-(2 / 3)^{n+2}}{(-1 / 3)^{2}}\right)+\left(\frac{2}{3}\right)^{n}(n+1) \\
& \# \text { calculate denominators }
\end{aligned}
$$

$$
=-(n+1)\left(\frac{2}{3}\right)^{n}+\frac{(1 / 3)-\left(2^{n+1} / 3^{n+2}\right)}{(-1 / 3)^{2}}+\left(\frac{2}{3}\right)^{n}(n+1)
$$

\# calculate first term, which cancels last

$$
=\frac{(1 / 3)-\left(2^{n+1} / 3^{n+2}\right)}{1 / 9}=3-2(2 / 3)^{n}
$$

Question 3. induction [7 marks]

Part (a) proof [5 MARKS]

Prove the following statement using induction:

$$
\forall n \in \mathbb{N}, n \geq 4 \Rightarrow 3^{n}>n^{3}+n
$$

sample solution: Define $P(n): n \geq 4 \Rightarrow 3^{n}>n^{3}+n$. I will prove $\forall n \in \mathbb{N}, P(n)$ by induction.
base case, $\boldsymbol{P}(4): 3^{4}=81>68=4^{3}+4$, which verifies $P(4)$.
inductive step: Let $n \in \mathbb{N}$ and assume $n \geq 4$ and $P(n)$, that is $3^{n}>n^{3}+n$. I want to show $P(n+1)$, that is $3^{n+1}>(n+1)^{3}+(n+1)$.
body: Notice:

$$
\begin{aligned}
3^{n+1} & =3 \times 3^{n} \\
& >3 n^{3}+3 n=n^{3}+n^{3}+n^{3}+3 n \quad \text { b by IH } \\
& \geq n^{3}+3 n^{2}+9 n+3 n \quad \# \text { since } n \geq 4 \geq 3 \\
& =n^{3}+3 n^{2}+3 n+9 n=n^{3}+3 n^{2}+3 n+4 n+n+4 n \\
& \geq n^{3}+3 n^{2}+3 n+1+n+1 \quad \# \text { since } n \geq 4 \geq 1 / 4 \\
& =(n+1)^{3}+(n+1) \quad \text { ■ }
\end{aligned}
$$

Part (b) analysis [2 MARKS]

Explain why the hypothesis $n \geq 4$ is needed, or else explain why it is not needed.
sample solution: The hypothesis is needed because $3^{3}<3^{3}+3$, and the claim is only true for integers greater than, or equal to, 4.

Question 4. big-Omega [5 marks]

In what follows use the following definition for $f \in \Omega(g)$:

$$
\exists c, n_{0} \in \mathbb{R}^{+}, \forall n \in \mathbb{N}, n \geq n_{0} \Rightarrow f(n) \geq c g(n)
$$

Define $f(n)=n^{3}$ and $g(n)=2^{n}$. Prove that $f \notin \Omega(g)$. You may not use techniques of calculus such as limits, and you may not use Theorem 5.1 from the course notes. You may assume, without proof, that for any integer k greater than $4,2^{k}>6 k$ (although you are not required to use this).

Term Test-Sample Solutions

CSC165H1 / LEC0101/0201 - Danny Heap
November 21st, 1:40 OR 3:10 - Duration: 80 minutes
sample solution: I will prove that $f \notin \Omega(g)$, that is:

$$
\forall c, n_{0} \in \mathbb{R}^{+}, \exists n \in \mathbb{N}, n \geq n_{0} \wedge f(n)<c g(n)
$$

header: Let $c, n_{0} \in \mathbb{R}^{+}$. Let

$$
n=2^{1+\left\lceil\max \left(\lg \left(n_{0}\right), 4,1+\lg (1 / c)\right)\right\rceil}
$$

I want to show that $n \geq n_{0} \wedge c 2^{n}>n^{3}$. (My choice of n is motivated by Problem Set \#3, 2(a)).
body: By choice of n we have $n>2^{l g\left(n_{0}\right)}=n_{0}$. Also, by choice of n we have $n>2^{1+\lg (\lg (1 / c))}=2 \lg (1 / c)$, so $n / 2>\lg (1 / c)$, so $2^{n / 2}>1 / c$. Finally, by choice of n we have $n \geq 2^{5}$ and n is an integer power of 2 , so $n>6 \lg (n)$, or $n / 2>3 \lg (n)$ and $2^{n / 2}>n^{3}$. Putting these together, and raising to powers of 2, we have:

$$
\begin{array}{rlrl}
2^{n / 2} & >n^{3} & & \\
2^{n} & >2^{n / 2} n^{3} & (*) \quad \text { \# multiply by } 2^{n / 2} \\
2^{n / 2} & >1 / c & & \\
2^{n / 2} n^{3} & >n^{3} 1 / c & (* *) \quad \text { \# multiply by } n^{3} \\
2^{n} & >n^{3} 1 / c \quad \#(*) \text { and }(* *) \\
c 2^{n} & >n^{3} \quad \text { ■ }
\end{array}
$$

