
Term Test—Sample Solutions

CSC165H1 / LEC0101/0201 — Danny Heap

November 21st, 1:40 OR 3:10 — Duration: 80 minutes

Question 1. short answers [9 marks]
Part (a) step counting [1 mark]
Read over function f (n) below and state how many times the loop iterates when f (11) is called.

 def f(n: int) -> int:
 """Assume i >= 0"""
 i = 5
 while i < 5 * n:
 i = i * i

sample solution: 2 times

Part (b) i in terms of s [1 mark]
For function f (n) above, find a formula for i(s), the value of i after s iterations of the loop body.

sample solution: i(s) = 52
s

Part (c) step counting formula [1 mark]
Use your work in the previous parts to find a formula for the exact number of iterations of the loop if f (n) is
called, for some positive natural number n. Use floor or ceiling to make sure that your formula specifies the
appropriate integer.

sample solution: dlog2(log5(n) + 1)e

Part (d) asymptotic comparisons [3 marks]
Let f (n) = 5n3 + 2n and let д(n) = 16 log(n). Circle each true statement below. Do nothing to false statements.
You gain points for each statement correctly circled, or correctly left uncircled.

f (n) + д(n) ∈ Θ(f (n)) д(n) ∈ Θ(f (n) + д(n)) f (n) · д(n) ∈ O(д(n))

f (n) ∈ O(f (n) · д(n)) f (n) · д(n) ∈ Ω(2n) 2n ∈ Ω(f (n) · д(n))

sample solution: Circle only f (n) + д(n) ∈ Θ(f (n)), f (n) ∈ O(f (n) · д(n)), and 2n ∈ Ω(f (n) · д(n)).

Part (e) binary numbers [3 marks]
Theorem 4.2 of the course notes guarantees a unique binary representation with the left-most bit being 1, for each
positive natural number. Beneath each quantity below, write the number of bits (binary digits) in its unique
binary representation.

215 215 − 1 4 × (215 − 1)

sample solution: 215 has 16 bits, 215 − 1 has 15 bits, 4 × (215 − 1) has 17 bits.

Term Test—Sample Solutions

CSC165H1 / LEC0101/0201 — Danny Heap

November 21st, 1:40 OR 3:10 — Duration: 80 minutes

Question 2. algorithm analysis [11 marks]

Read over function has_mod_3. Assume that integer_list contains only entries from {0, 1, 2}, with duplicates
allowed. Define n as the length of integer_list and WChas_mod_3(n) as the largest number of “steps,” for all
integer_list of length n.

In what follows, if has_mod_3 returns True right after examining k entries in integer_list, count this as
k steps. If has_mod_3 returns False after examining all n entries in integer_list, count this as n + 1 steps.

 def has_mod_3(integer_list) -> bool:
 for i in range(len(integer_list)):
 if integer_list[i] % 3 == 0:
 return True
 return False

Part (a) lower bound [2 marks]

Find and prove a lower bound, L(n) forWChas_mod_3(n). Your lower bound should be in the same asymptotic
complexity class as the upper bound you find in the next question.

sample solution: L(n) = n is a lower bound on WChas_mod_3(n), the worst run-time for inputs of size n with
entries taken from {0, 1, 2}.

header: Let n ∈ N. Let LL the list where each of the n entries is a 1. I want to show that has_mod_3(LL)
takes at least n steps.

body: has_mod_3(LL) examines all n entries from LL at a cost of n steps. This meansWChas_mod_3(n) ≥ L(n)
�

Part (b) upper bound [2 marks]

Find and prove an upper bound, U (n) forWChas_mod_3(n). Your upper bound should be in the same asymptotic
complexity class as the lower bound you found in the previous question.

sample solution: U (n) = n + 1 is an upper bound on the run-times of has_mod_3(x) for all lists x of length
n with entries taken from {0, 1, 2}.

header: Let n ∈ N. Let AL be an arbitrary list consisting of n elements from {0, 1, 2}. I want to show that
has_mod_3(AL) takes no more than n + 1 steps.

body: has_mod_3(AL) examines no more than n entries from AL and may then return False, for a total of
n + 1 ≤ U (n) steps. Since AL is arbitrary this meansWChas_mod_3(n) ≤ U (n) �

Term Test—Sample Solutions

CSC165H1 / LEC0101/0201 — Danny Heap

November 21st, 1:40 OR 3:10 — Duration: 80 minutes

Part (c) average for length 3 [3 marks]

What is the average number of steps taken by has_mod_3 for lists of length 3? Show your calculations, and
explain them, to arrive at this result. Assume each input list is equally likely.

sample solution: The number of lists that have 0 in the first position, and hence return True after one step is
1 × 3 × 3 or 9. The number of lists that have 1 or 2 in their first position, and 0 in their second position, and
hence return True after 2 steps is 2× 1× 3 or 6. The number of lists that have some combination of 1 and 2
in their first two positions and 0 in their third position is 2 × 2 × 1 or 4. Finally, the number of lists that
have no 0s and take n + 1 steps is 2 × 2 × 2 or 8. The total number of lists of length 3 is 3 × 3 × 3 or 27.
Thus the average number of steps is:

1 × 9 + 2 × 6 + 3 × 4 + 4 × 8

27
=

65

27
, a bit more than 2 steps

Part (d) average for length n [4 marks]

Find a closed formula for the average number of steps taken by has_mod_3 for lists of length n. Show your
calculations to arrive at this result. You may find the following formula helpful (although you are not required to
use it):

i=n−1∑
i=0

ir i =
nrn

r − 1
+
r − rn+1

(r − 1)2

Assume each input list is equally likely.

sample solution: In general, if the first 0 is encountered at position i there there are i − 1 positions filled with
1s and 2s, so 2i−1 possibilities, and n − i positions filled with 1s, 2s, or 0s, so 3n−i possibilities. The lists with
no 0s fill all positions with 1s and 2s, so 2n possibilities. Summing up the number of steps taken by each
subset of lists, and dividing by 3n total lists gives:

(1/3n)

(
n∑
i=1

i2i−13n−i

)
+
2n(n + 1)

3n
=

(
n∑
i=1

i2−1
2i

3i

)
+

(
2

3

)n
(n + 1)

factor out 3n

= (1/2)

(
n∑
i=0

i
2i

3i

)
+

(
2

3

)n
(n + 1)

factor out 1/2, add 0 to summation

= (1/2)

(
(n + 1)(2/3)n+1

(2/3) − 1
+
(2/3) − (2/3)n+2

((2/3) − 1)2

)
+

(
2

3

)n
(n + 1)

substitute n with n + 1 in formula, so it applies to this case

= (1/2)

(
(n + 1)(2/3)n+1

−(1/3)
+
(2/3) − (2/3)n+2

(−1/3)2

)
+

(
2

3

)n
(n + 1)

calculate denominators

Term Test—Sample Solutions

CSC165H1 / LEC0101/0201 — Danny Heap

November 21st, 1:40 OR 3:10 — Duration: 80 minutes

= −(n + 1)

(
2

3

)n
+
(1/3) − (2n+1/3n+2)

(−1/3)2
+

(
2

3

)n
(n + 1)

calculate first term, which cancels last

=
(1/3) − (2n+1/3n+2)

1/9
= 3 − 2(2/3)n

Question 3. induction [7 marks]

Part (a) proof [5 marks]

Prove the following statement using induction:

∀n ∈ N,n ≥ 4⇒ 3n > n3 + n

sample solution: Define P(n) : n ≥ 4⇒ 3n > n3 + n. I will prove ∀n ∈ N, P(n) by induction.

base case, P(4): 34 = 81 > 68 = 43 + 4, which verifies P(4).

inductive step: Let n ∈ N and assume n ≥ 4 and P(n), that is 3n > n3 + n. I want to show P(n + 1), that is
3n+1 > (n + 1)3 + (n + 1).

body: Notice:

3n+1 = 3 × 3n

> 3n3 + 3n = n3 + n3 + n3 + 3n # by IH
≥ n3 + 3n2 + 9n + 3n # since n ≥ 4 ≥ 3

= n3 + 3n2 + 3n + 9n = n3 + 3n2 + 3n + 4n + n + 4n

≥ n3 + 3n2 + 3n + 1 + n + 1 # since n ≥ 4 ≥ 1/4

= (n + 1)3 + (n + 1) �

Part (b) analysis [2 marks]

Explain why the hypothesis n ≥ 4 is needed, or else explain why it is not needed.

sample solution: The hypothesis is needed because 33 < 33 + 3, and the claim is only true for integers greater
than, or equal to, 4.

Question 4. big-Omega [5 marks]

In what follows use the following definition for f ∈ Ω(д):

∃c,n0 ∈ R+,∀n ∈ N,n ≥ n0 ⇒ f (n) ≥ cд(n)

Define f (n) = n3 and д(n) = 2n . Prove that f < Ω(д). You may not use techniques of calculus such as limits, and
you may not use Theorem 5.1 from the course notes. You may assume, without proof, that for any integer k
greater than 4, 2k > 6k (although you are not required to use this).

Term Test—Sample Solutions

CSC165H1 / LEC0101/0201 — Danny Heap

November 21st, 1:40 OR 3:10 — Duration: 80 minutes

sample solution: I will prove that f < Ω(д), that is:

∀c,n0 ∈ R+,∃n ∈ N,n ≥ n0 ∧ f (n) < cд(n)

header: Let c,n0 ∈ R+. Let
n = 21+ dmax(lg(n0),4,1+lg(1/c))e

I want to show that n ≥ n0 ∧ c2n > n3. (My choice of n is motivated by Problem Set #3, 2(a)).

body: By choice of n we have n > 2lд(n0) = n0. Also, by choice of n we have n > 21+lg(lg(1/c)) = 2 lg(1/c), so
n/2 > lg(1/c), so 2n/2 > 1/c. Finally, by choice of n we have n ≥ 25 and n is an integer power of 2, so
n > 6 lg(n), or n/2 > 3 lg(n) and 2n/2 > n3. Putting these together, and raising to powers of 2, we have:

2n/2 > n3

2n > 2n/2n3 (∗) # multiply by 2n/2

2n/2 > 1/c

2n/2n3 > n31/c (∗∗) # multiply by n3

2n > n31/c # (∗) and (∗∗)
c2n > n3 �

