Question 1. short answers [14 marks]

Part (a) [2 MARKS]
Read the two statements:

$$
\begin{aligned}
(\forall n \in \mathbb{N}, P(n)) & \Rightarrow(\forall m \in \mathbb{N}, Q(m)) \\
\forall n \in \mathbb{N}, P(n) & \Rightarrow Q(n)
\end{aligned}
$$

Define predicates $P(n)$ and $Q(n)$ so that one of the two statements is true and the other is false. You may use the predicate definition format from the course notes, e.g. $P(n)$: "...", for $n \in \mathbb{N}$.
solution: Define:

$$
\begin{aligned}
& P(n): n \text { is odd, for } n \in \mathbb{N} \text {. } \\
& Q(n): n \text { is even, for } n \in \mathbb{N} .
\end{aligned}
$$

Since not all natural numbers are odd, the hypothesis of the first statement is false, so the entire statement is true by vacuous truth. However, the existence of one or more odd (and hence not even!) natural numbers means at least one counter-example for the second statement exists.

Part (b) [2 MARKS]
Define $U=\{n: n \in \mathbb{N} \wedge 3 \mid n\}$ and $V=\{n: n \in \mathbb{N} \wedge n>34 \wedge n<45\}$. Show the set $V \backslash U$ by listing all its elements.
solution: The set of natural numbers greater than 34 and less than 45 that are not multiples of 3 are:

$$
\{35,37,38,40,41,43,44\}
$$

Part (c) [2 MARKS]

The floor function is define by $\lfloor x\rfloor$: "The largest integer $\leq x$," for $x \in \mathbb{R}$. Consider this statement:

$$
\exists x \in \mathbb{R}, \forall y \in \mathbb{R},\lfloor x y\rfloor=\lfloor x\rfloor \times\lfloor y\rfloor
$$

Is the statement true or false? Briefly explain why or why not.
solutions: The statement is true. Let $x=0$ and the left-hand side becomes the floor of 0 , while the right-hand side becomes 0 also.

Part (d) [2 MARKS]
Define set $D=\{d: d$ is a $\operatorname{dog}\}$, predicate $F(d)$: " d is furry," where $d \in D$, and predicate $Y(d):$ " d is yappy," where $d \in D$. Express the English statement "No yappy dog is furry." as a sentence in predicate logic. Your predicate logic sentence must use predicates F and Y and must be quantified over set D.
solution: Every dog is not both yappy and furry:

$$
\forall d \in D, \neg Y(d) \vee \neg F(d)
$$

Part (e) [2 MARKS]

Suppose S is a non-empty subset of \mathbb{N}. Write a predicate logic sentence expressing the claim that 17 is the smallest number belonging to S.
solution: 17 is an element of S and there is no smaller element:

$$
17 \in S \wedge \forall s \in \mathbb{N}, s \in S \Rightarrow s \geq 17
$$

Part (f) [2 MARKS]
Write the negation of the predicate logic sentence:

$$
(p \Leftrightarrow q) \Rightarrow r
$$

...in predicate logic without using the operators \Leftrightarrow or \Rightarrow
solution: The hypothesis says that p and q have the same truth value, and we conjoin that with the negation of the conclusion:

$$
((p \wedge q) \vee(\neg p \wedge \neg q)) \wedge \neg r
$$

Part (g) [2 MARKS]
Fill in the last column of the truth table below, where T stands for "true" and F stands for "false."
solution: All rows where the conclusion is true are marked T. All rows where the hypothesis is false are also marked T. The remaining two rows have a true hypothesis and false conclusion, so they are marked F .

p	q	r	$(p \Leftrightarrow q) \Rightarrow r$
T	T	T	T
T	T	F	F
T	F	T	T
T	F	F	T
F	T	T	T
F	T	F	T
F	F	T	T
F	F	F	F

Question 2. divisibility [9 MARKS]
Recall that for integers m and $n, m \mid n$ is defined as $\exists k \in \mathbb{Z}, k m=n$. Consider the the statement:

$$
\forall a, b, p, q \in \mathbb{Z}, 7|(a p+b q) \Rightarrow 7| p \wedge 7 \mid q
$$

Part (a) [1 MARK]
Write the predicate logic converse of the statement.
solution:

$$
\forall a, b, p, q \in \mathbb{Z}, 7|p \wedge 7| q \Rightarrow 7 \mid(a p+b q)
$$

Part (b) [1 MARK]
Write the predicate logic contrapositive of the statement.
solution:

$$
\forall a, b, p, q \in \mathbb{Z}, 7 \nmid p \vee 7 \nmid q \Rightarrow 7 \nmid(a p+b q)
$$

Part (c) [1 MARK]
Write the predicate logic negation of the statement.
solution:

$$
\exists a, b, p, q \in \mathbb{Z}, 7 \mid(a p+b q) \wedge(7 \nmid p \vee 7 \nmid q)
$$

Part (d) [3 MARKS]

Spoiler: the statement is false. However, write a header for a "proof" of the statement as though it were true. Introduce all variables and assumptions that would be required, including any variables needed to "unpack" the divisibility predicates. For example $7 \mid s$ could be unpacked as $\exists k \in \mathbb{N}, 7 k=s$, and k could be introduced by "Let $k=\ldots$. ." The last sentence of your header should begin "We want to show..." where "..." indicates what remains to be proved, in the style of our course notes.
solution: Let $a, b, p, q \in \mathbb{Z}$. Assume $7 \mid(a p+b q)$, that is $\exists k_{1} \in \mathbb{Z}, 7 k_{1}=(a p+b q)$. Let $k_{2}=$ \qquad and $k_{3}=$ \qquad . We want to show that $p=7 k_{2}$ and $q=7 k_{3}$.

Part (e) [3 MARKS]

Write a header and body for a disproof of the statement.
solution: We will prove the negation of the original statement:

$$
\exists a, b, p, q \in \mathbb{Z}, 7 \mid(a p+b q) \wedge(7 \nmid p \vee 7 \nmid q)
$$

header: Let $a=b=1$, let $p=3, q=4$, and $k=1$. We want to show that $7 k=(a p+b q) \wedge(7 \nmid p \vee 7 \nmid q)$.
body: Substiting the given values for a, p, b, q, and k :

$$
7 k=7=(1(3)+1(4))=(a p+b q)
$$

so $7 \mid(a p+b q)$. However $7 \nmid 3$ and $7 \nmid 4$, so $7 \nmid p \vee 7 \nmid q$.

Question 3. modular arithmentic [6 MARKS]

Recall that for $a, b, n \in \mathbb{Z}$, with $n \neq 0$ we say a is congruent to b modulo n if and only if $n \mid a-b$. In this case we write $a \equiv b(\bmod n)$, or equivalently $a \equiv b \bmod n$.

Recall also Theorem 2.19(3), proved in Problem Set $\# 1$, that for all $a, b, c, d, n \in \mathbb{Z}$, with $n \neq 0$, if $a \equiv c \bmod n$ and $b \equiv d \bmod n$, then $a b \equiv c d \bmod n$.

You may use Theorem 2.19(3) one or more times to prove the statement:

$$
\forall a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3} \in \mathbb{Z}, a_{1} \equiv b_{1} \bmod 5 \wedge a_{2} \equiv b_{2} \bmod 5 \wedge a_{3} \equiv b_{3} \bmod 5 \Rightarrow a_{1} a_{2} a_{3} \equiv b_{1} b_{2} b_{3} \bmod 5
$$

Part (a) [3 MARKS]

Write a header for proving the statement. Introduce all variables and assumptions that would be required, including any variables needed to "unpack" the divisibility predicates. For example $5 \mid s$ could be unpacked as $\exists k \in \mathbb{N}, 5 k=s$, and k could be introduced by "Let $k=\ldots$." The last sentence of your header should begin "We want to show..." where "..." indicates what remains to be proved, in the style of our course notes.
solution: Although solutions are possible unpacking congruence and divisibility, it seems handier to use 2.19(3). For thoroughness we introduce variables for divisibility, but we don't end up using them (although some fine proofs might use them).
header: Let $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3} \in \mathbb{Z}$. Assume: $a_{1} \equiv b_{1} \bmod 5 \wedge a_{2} \equiv b_{2} \bmod 5 \wedge a_{3} \equiv b_{3} \bmod 5$. In other words, $\exists k_{1} \in \mathbb{Z}, 5 k_{1}=a_{1}-b_{1}, \exists k_{2} \in \mathbb{Z}, 5 k_{2}=a_{2}-b_{2}$, and $\exists k_{3} \in \mathbb{Z}, 5 k_{3}=a_{3}-b_{3}$. We want to show that $a_{1} a_{2} a_{3} \equiv b_{1} b_{2} b_{3} \bmod 5$.

Part (b) [3 marks]
Write the body for the proof of the statement.

solution:

$$
\begin{aligned}
a_{1} & \equiv b_{1} \bmod 5 \quad \text { \# by assumption } \\
a_{2} & \equiv b_{2} \bmod 5 \quad \text { \# by assumption } \\
a_{1} a_{2} & \equiv b_{1} b_{2} \bmod 5 \quad \text { \# by } 2.19(3) \\
a_{3} & \equiv b_{3} \bmod 5 \quad \text { \# by assumption } \\
a_{1} a_{2} a_{3} & \equiv b_{1} b_{2} b_{3} \bmod 5 \quad \square \quad \text { \# by } 2.19(3)
\end{aligned}
$$

