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1. [3 marks] propositions The truth table below has one column missing:

p q r (p, q), r

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F

(a) [1 mark] Complete the table by placing either a T or a F in each row of the empty column.

Solution

p q r (p, q), r

T T T T

T T F F

T F T F

T F F T

F T T F

F T F T

F F T T

F F F F

part marks: -0.5 for 1-2 errors, -1 for more

(b) [1 mark] Write the negation of (p, q), r in formal propositional logic.

Solution

(p, q) ^ :r _ :(p, q) ^ r

part marks: they could actually get away with negating the whole thing! -0.5 if it produces 1{2

incorrect results, -1 if more

(c) [1 mark] Write an expression equivalent to the negation of (p, q), r in formal propositional logic,

using only the operations ^;_, and :, that is you may not use ) or ,.

Solution

(p ^ q ^ :r) _ (:p ^ :q ^ :r) _ (p ^ :q ^ r) _ (:p ^ q ^ r)

part marks: -0.5 if it produces 1{2 wrong results, -1 if more
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2. [9 marks] Primes/Composites Notice that 2; 5; 11; 17; 23; and 29 are all primes, and are all congruent to 2

(mod 3), that is each of them leaves a remainder of 2 when divided by 3. You may use the following

predicates in this question:

d j n : 9k 2 Z; n = dk; where d; n 2 Z
Prime(p) : p > 1 ^ 8d 2 N; d j p) d = 1 _ d = p; where p 2 N
Composite(n) : 9d 2 N; d > 1 ^ d < n ^ d j n; where n 2 N
a � b (mod m) : m j (a� b); where a; b;m 2 Z;m 6= 0

(a) [1 mark] Write the following statement in formal predicate logic: \For any natural number n there

is a larger natural number p that is both prime and congruent to 2 (mod 3)."

Solution

8n 2 N; 9p 2 N; Prime(p) ^ p > n ^ p � 2 (mod 3)

A, 1 mark: Correct semantically and formally

(b) [4 marks] Prove the statement from the previous part. You may use, without proof, the fact that any

natural number greater than 1 may be expressed as the product of 1 or more prime factors.

Solution

Proof: Let n 2 N. There are a couple of cases to consider.
Case n < 3: Let p = 5. Then Prime(p) ^ p > n ^ p � 2 (mod 3) (since 3 j (5� 2)).

Case n � 3: Let m = n!�1. Since n � 3 we know 3 j n!, so also 3 j (m�2) (result on linear

combinations), and m � 2 (mod 3).

Also since n � 3, m = n!� 1 � 5 > 1, so m is a product of primes p1 � � � � � pk. Since

if pi � 1 (mod 3) for all 1 � i � k we would have m � 1 (mod 3), there must be some

pi � 2 mod 3. Let p be such a value. Then p > n, since otherwise p � n) p j n!, but
p j n! ^ p j (n!� 1)) p j 1 (due to linear combinations), and that's a contradiction.

Thus there is a prime p, p > n ^ p � 2 (mod 3) �.

A, 1 mark: Introduce names and assumptions

B, 1 mark: Set up an argument (direct, contradiction, induction, whatever...)

C, 2 marks: Successfully derive result

(c) [1 mark] Write the following statement in formal predicate logic \For any natural number n there is

a larger natural number c that is odd, composite, and congruent to 2 (mod 3)."

Solution

8n 2 N; 9c 2 N; Composite(c) ^ c > n ^ c � 1 (mod 2) ^ c � 2 (mod 3)

A, 1 mark: Correct semantics and formallyf
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(d) [3 marks] Prove the statement from the previous part.

Solution

Proof: Let n 2 N. Let c = 30(n + 1) + 5. I will show that c is composite, greater than n, odd,

and congruent to 2 (mod 3).

By construction c = 30(n+1)+5 = 5(6n+7), so 5 j c and 5 > 1 and 5 < c (since 6n+7 > 1).

So c is composite.

Also 6n � n) 6n+ 7 > n, so c > n.

Factoring c = 30(n+ 1) + 5 = 2(15n+ 17) + 1 � 1 (mod 2), so c is odd.

Finally c� 2 = 30(n+ 1) + 3 = 3(10n+ 11), so 3 j c� 2 and c � 2 (mod 3). �

A, 1 mark: Introduce names and assumptions

B, 1 mark: Set up an argument (direct, contradiction, induction, whatever...)

C, 1 mark: Successfully derive result (must show odd, congruence, composite, greater than n)
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3. [7 marks] different moduli Assume a; b;m; n are integers with gcd(m;n) = 1, a � b (mod m), and a � b

(mod n).

(a) [4 marks] Prove that a � b (mod mn). Hint: Recall that a � b (mod m) means m j (a� b). Unwrap

the de�nitions of m j (a � b), n j (a � b), and mn j (a � b). You may use (without proof) the fact

that:

8p; q; r 2 Z; � gcd(p; q) = 1 ^ p j qr�) p j r

Solution

Proof: Let a; b;m; n 2 Z. Assume that gcd(m;n) = 1, that a � b (mod m), and that a � b

(mod n), that is 9k1; k2 2 Z;mk1 = (a� b) ^ nk2 = (a� b). Let k1; k2 be such values.

So k1m = k2n, so m j k2n. Since gcd(m;n) = 1, it follows that m j k2, that is 9k3 2
Z; k3m = k2. Let k3 be such a value and

(a� b) = k2n = k3mn

So a � b (mod mn) �

A, 1 mark: Introduce names and assumptions

B, 1 mark: (try) to use de�nitions of congruence and division to make progress

-0.5 for examples but not plausible proof structure (0 under C in this case)

C, 2 marks: Success in showing the result. Part marks for making progress or making only

arithmetic errors.

-0.5 for getting to m j nk but not m j k.

(b) [3 marks] Prove that if i; j are any integers with 0 � i; j < mn, i � j (mod m), and i � j (mod n),

then i = j.

Solution

Proof: Let i; j;m; n 2 Z. Assume gcd(m;n) = 1, that i; j 2 [0;mn) (half-open interval), that

i � j (mod m) and i � j (mod n). We can assume that i � j, since the same proof works

if we swap them

By the previous part we know that i � j (mod mn), so mn j (i � j). This means 9k 2
Z;mnk = (i� j). Let k be such a value. Since i and j lie in the half-open interval [0;mn),

and i � j, their di�erence is non-negative and at most (mn� 1)� 0 = mn� 1, so

mnk = (i� j)) 0 � mnk ^mnk < mn) k = 0

Thus i = j �

A, 1 mark: Introduce names and assumptions. They may say the assumptions on m;n are the

same as the last part.

B, 1 mark: (try) to use equivalence (mod mn), or perhaps some other argument that they

structure...
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C, 1 mark: Successfully use equivalence (mod mn), or some other argument, to show i = j.
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4. [11 marks] step counting Consider the gcd function: Consider the Fibonacci sequence, fn de�ned by:

fn =

8<
:n if n < 2

fn�2 + fn�1 if n � 2

(a) [3 marks] Use induction on n to prove that for every natural number n greater than 2, fn > fn�1 ^
fn�1 > 0.

Solution

Proof (induction): De�ne P (n) : n > 2) fn > fn�1 ^ fn�1 > 0. I prove that 8n 2 N; P (n).
base case: From the de�nition f3 = 2 > 1 = f2, and f2 = 2 > 0, so P (3) is true.

inductive step: Let n 2 N. Assume P (n). I want to show that P (n+ 1) follows.

Assume that n � 3, since otherwise (given the base case) there is nothing to prove. That

means that

fn+1 = fn�1 + fn > fn (by IH, fn�1 > 0)

^0 < fn�1 < fn (by IH, fn > fn�1)

So P (n+ 1) follows �

A, 1 mark: introduce names and assumptions, base case

B, 1 mark: inductive step, including IH

C, 1 mark: derive result

(b) [4 marks] Use induction on n to prove that for every natural number n, gcd(fn; fn+1) = 1.

Solution

Proof: De�ne P (n) : gcd(fn; fn+1) = 1. I will prove that 8n 2 N; P (n).
base case: gcd(f0; f1) = gcd(0; 1) = 1, so P (0) is true.

inductive step: Let n 2 N and assume P (n). I want to show that P (n+ 1) follows.

Since fn+2 = fn + fn+1, any integer that divides both fn+2 and fn+1 also divides their

di�erence, fn+2 � fn+1 = fn (divisibility of linear combinations). The largest integer that

divides both fn and fn+1 is their greatest common divisor 1, so gcd(fn+1; fn+2) = 1 �

A, 1 mark: introduce names and assumptions

B, 1 mark: base case

C, 1 mark: inductive step, including IH

D, 1 mark: derive result

(c) [4 marks] Read over the function gcd below:
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1 def gcd(n, m):

2 while m * n != 0:

3 n, m = m, n % m

4 if m == 0:

5 return n

6 else:

7 return m

Assume the body of the loop in gcd is one step. Use induction on n to prove that for any natural

number n greater than 2, gcd(fn; fn�1) takes at least n�2 steps, where fn is the nth number in the

Fibonacci sequence de�ned above. If m and n are natural numbers with m 6= 0, you may assume

that there is some integer q such that n = qm+ (n%m), that m > (n%m) and (n%m) � 0.

Solution

Proof (induction): De�ne

P (n) : n > 2) gcd(fn; fn�1) takes at least n� 2 steps

base case: gcd(2; 1) = gcd(f3; f2). After the �rst iteration of the loop, n is set to 1 and m is set

to 2%1 = 0, so there is 1 = 3� 2 iteration of the loop, so P (3) is true.

inductive step: Let n 2 N and assume P (n). I will show that P (n+ 1) follows from this, that is

gcd(fn+1; fn) takes at least n+ 1� 2 = n� 1 steps.

After the �rst iteration of the loop n is set to fn and m is set to fn+1%fn. Notice that fn�1
satis�es the conclusion of the Quotient-Remainder Theorem:

fn+1 = 1� fn + fn�1 ^ fn > fn�1 ^ fn�1 � 0

So at the end of the �rst loop (n;m) = (fn; fn�1). By the inductive hypothesis, there will

be at least n � 2 to complete the work of gcd(fn; fn�1), so there will be n � 1 steps in all

�

A, 1 mark: introduce names and assumptions

B, 1 mark: base case

C, 1 mark: set up inductive step and IH

D, 1 mark: successfully derive result. -1 if they don't tie induction to loop iterations somehow.

-1 if they don't tie values to �bonacci numbers
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5. [10 marks] runtime Function f1 takes positive integer n as input, and its runtime depends only on n:

(a) [4 marks]

1 def f1(n):

2 i = 0

3 while i**2 < n:

4 j = 0

5 while j < n:

6 j = j + 3

7 i = i + 2

We will consider the runtime of f1 to be the total cost of executing Line 6 over all loop iterations,

and ignoring all other operations. Determine the exact number of times Line 6 is executed in terms

of the input size, n.

Solution

sample: The inner loop sets j to 3s for every step s until j � n, so it executes dn=3e for each i.

The outer loop sets i to 2s0 for every step s0, until i2 � n. Thus it exits when 4s02 � n, or

s0 = dpn=2e.
Combining these gives: �

n

3

�&p
n

2

'

... steps for input size n.

A, 1 mark: expression appears to be, at least, a product

B, 2 marks: expression takes into account steps of 2 and 3, somehow

C, 1 mark: expression takes into account outer square root

(b) [1 mark] Use your answer from (a) to determine a simple Theta expression for the runtime of f1. No

justi�cation required.

Solution

sample: Floors and ceilings, as well as multiplicative coe�cients, do not change �, so we have

RT 2 �(n
p
n) = �(n3=2)

part marks: base this on their expression for part a. -0.5 if they don't remove 
oor/ceiling. -0.5

if they don't remove multiplicative coe�cients. -0.5 (but never go below zero...) if they end

up in a di�erent complexity class.

(c) [4 marks] Helper function h(k) takes k steps for input of size k. For example, h(10) takes 10 steps.

Consider the runtime of f2 to be the total cost of executing Line 4 over all loop iterations.

1 def f2(n):

2 i = 0

3 while i**2 < n:

4 h(i)

5 i = i + 1
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Recall the formula, valid for all j 2 N:
jX

i=0

i =
j(j + 1)

2

Determine the exact cost of executing line 4 of function f2 above.

Solution

sample: Helper function h executes h(i) steps as i ranges from 0 to dpne � 1, contributing

dpne�1X
j=0

j =
(dpne � 1)(dpne)

2
steps

A, 2 marks: expression takes into account i2 < n

B, 1 mark: expression takes into account h(i)

C, 1 mark: expression is an integer

(d) [1 mark] Use (c) to determine a simple Theta expression for the runtime of f2. No justi�cation

required.

Solution

sample: Floors, ceilings, slower-growing terms, and multiplicative constants do not change �, so

we have

RT 2 �(n)

part marks: base this on previous part. -0.5 if they don't remove 
oor/ceiling. -0.5 if they don't

remove constant. -0.5 (but never below zero...) if they end up in a di�erent complexity

class.
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6. [6 marks] average case analysis

Assume that p is a program, that Ip;n is the set of inputs of size n for p, that for all n, jIp;nj 2 Z+ (in

other words, for each n there are �nitely many inputs for p), and that RT (x) is the number of steps p(x)

requires to run.

Let f : N! R
�0 and assume:

9c1; n1 2 R+;8n 2 N; 8x 2 Ip;n; n � n1 ) RT (x) � c1f(n)

9c2; n2 2 R+;8n 2 N; 8x 2 Ip;n; n � n2 ) RT (x) � c2f(n)

De�ne the average runtime for inputs of size n as:

AV G(n) =

P
x2Ip;n RT (x)
jIp;nj

Prove that AV G 2 �(f), in other words prove:

9c3; c4; n3 2 R+; 8n 2 N; n � n3 ) c3f(n) � AV G(n) ^ AV G(n) � c4f(n)

Solution

Proof: Let Ip;n and RT be as de�ned above, and assumptions about f; c1; n1; c2; n2 be as above. Let

n0 = max(n1; n2), let c3 = c1 and let c4 = c2.

Then 8n 2 N; n � n0 implies:

AV G(n) =

P
x2Ip;n RT (x)
jIp;nj �

P
x2Ip;n c1f(n)
jIp;nj =

jIp;njc1f(n)
jIp;nj = c1f(n) = c3f(n)

(by assumption)

AV G(n) =

P
x2Ip;n RT (x)
jIp;nj �

P
x2Ip;n c2f(n)
jIp;nj =

jIp;njc2f(n)
jIp;nj = c2f(n) = c3f(n)

(by assumption)

) AV G 2 �(f) �

A, 2 mark: Introduce names and assumptions. They are allowed to \borrow" these introductions from

the question statement explicitly. There are a lot of names, due to the nature of the question

B, 2 marks: Set up an argument (direct, contradiction, induction, whatever...).

C, 2 marks: Successfully arrive at the conclusion.
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7. [6 marks] connectedness

Recall the de�nition of the degree, d(u) of vertex u in a graph G = (V;E):

d(u) = jf(u; v) j (u; v) 2 Egj

Recall also that there is a path between vertices u and v if there is a sequence of distinct vertices

v0; v1; : : : ; vk, where v0 = u and vk = v, and for every i 2 f0; : : : ; k � 1g there is an edge (vi; vi+1) 2 E.

Finally, recall that G is connected means that for any pair of vertices u; v 2 V , there is a path from u to

v.

Prove that for every graph G = (V;E), if 8v 2 V; d(v) � bjV j=2c, then G is connected.

Solution

Proof: Let G = (V;E) be an arbitrary graph and assume 8v 2 V; d(v) � bjV j=2c. Let u; v 2 V be an

arbitrary pair of vertices in G. I will show that there is a path from u to v.

Let N(u) = fv j v 2 V ^ (u; v) 2 Eg [ fug and N(v) = fw j w 2 V ^ (v;w) 2 Eg [ fvg. By

assumption jN(u)j � bjV j=2c+ 1 and jN(V )j � bjV j=2c+ 1. I will show that N(u) \N(v) 6= ;,
so there is at least one vertex in common, forming a path from u to v. There are two cases to

consider, depending on whether jV j is even or odd:

Case jV j is even: Counting vertices, we have:

jN(v)j+ jN(u)j � bjV j=2c+ bjV j=2c+ 2 = jV j+ 2

So N(u) and N(v) must have at least 2 vertices in common, since N(u)[N(v) � V . �

Case jV j is odd: Let k1 2 N = (jV j � 1)=2, so jV j = 2k + 1. Then, counting vertices, we have:

jN(v)j+ jN(u)j � bjV j=2c+ bjV j=2c+ 2 = 2k + 2 = jV j+ 1

So N(u) and N(v) must have at least 1 vertex in common, since N(u) [N(v) � V . �

A, 1 mark: Introduce names and assumptions. They will probably need to introduce V and E, and

perhaps some arbitrary vertices. Do not deduct if they treat a name as being introduced by an

assumption, e.g. 9k;m = 3k, and then go on to use k as though it were introduced.

B, 2 marks: Set up an argument. This may not be the same as our approach, but give them up to 2

for setting up proof by induction, contradiction, properly, even if they cannot successfully show

connectivity. Give part credit for knowing what they need to show.

C, 3 marks: Show connectivity. Give no more than 1.5/3 if they don't convince you the graph is

connected.
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8. [12 marks] cycles

Recall the de�nitions of degree, path, and connected from the previous question, and recall that a sequence

of vertices v0; : : : ; vk in graph G = (V;E) is a cycle if:

� the sequence is a path from v0 to vk containing at least 3 distinct vertices, and

� there is an edge (vk; v0) 2 E.

(a) [3 marks] Prove that for every graph G = (V;E), if 9v 2 V; d(v) � 3, then jV j � 4.

Solution

Proof: Let G = (V;E). Assume 9v 2 V; d(v) � 3. Let v be such a vertex. I will show that

jV j � 4.

Let N(v) = fu j (u; v) 2 Eg [ fvg. Since d(v) � 3 jN(u)j � 4 and N(u) � V �

A, 1 mark: Introduce names and assumptions

B, 1 mark: Set up an argument (direct, induction, contradiction, whatever...)

C, 1 mark: Successfully derive result.

(b) [4 marks] Prove that for every graph G = (V;E), if 8v 2 V; d(v) � 3, then for every v 2 V there is a

path consisting of at least 4 distinct vertices starting at v.

Solution

Proof: Let G = (V;E) and assume that 8v 2 V; d(v) � 3. Let v 2 V . I will show that there is a

path beginning at v with at least 4 vertices.

Let P (v) be a maximal-length path beginning at v, P (v) = v; v1; : : : ; u, let u be the �nal

vertex in P (v). Since, by assumption, d(u) � 3 it must have at least 3 edges leading to

other vertices in P (v), since otherwise it would have an edge creating a longer path. This

means that P (v) has at least 4 vertices, including u �

A, 1 mark: Introduce names

B, 1 mark: Set up a proof structure

C, 2 marks: Derive conclusion
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(c) [5 marks] Prove that for every graph G = (V;E), if 8v 2 V; d(v) � 3, then G contains at least one

cycle containing at least 4 distinct vertices.

Solution

Proof: Let G = (V;E) and assume that 8v 2 V; d(v) � 3. Let v 2 V . I will show that there is a

cycle with at least distinct vertices starting at v.

From the previous part we know that there is a path P (v) with at least 4 vertices. Let u be

the farthest vertex in P (v) from v. Since, by assumption, d(u) � 3 and it has no edge to a

vertex outside P (v), u must have at least 3 neighbours in P (v). Let u0 be v's predecessor
in P (v) and u00 be u0's predecessor. Let u000 be a neighbour of u that is di�erent fromf u0

and u00. Then u; u000; : : : ; u00; u0; u forms a cycle of length at least 4 �

A, 1 mark: Introduce names

B, 1 mark: Set up a proof structure

C, 3 marks: Derive conclusion
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Use this page for rough work. If you want work on this page to be marked, please indicate this clearly at

the location of the original question.
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the location of the original question.
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