Learning Objectives

By the end of this worksheet, you will:

- Analyse the worst-case running time of binary search.

1. Analysing binary search. As you’ve discussed in CSC108 and/or CSC148, one of the most fundamental advantages of sorted data is that it makes it easier to search this data for a particular item. Rather than searching sequentially (item by item) through the entire list of data, we can employ the binary search algorithm:

```python
def binary_search(L: List[int], x: int) -> bool:
    """Return whether x is an element of L."
    i = 0  # i is the lower bound of the search range (inclusive)
    j = len(L)  # j is the upper bound of the search range (exclusive)
    while i < j:
        mid = (i + j) // 2  # mid is the midpoint of the search range
        if L[mid] == x:
            return True
        elif L[mid] < x:
            i = mid + 1  # New search range is (mid+1) to j
        else:
            j = mid  # New search range is i to mid
    # If this point is reached, then x is not in L.
    return False
```

The intuition behind analysing the running time of binary search is to say that at each loop iteration, the size of the range being searched decreases by a factor of 2. At the same time, our more formal techniques of analysis seem to have trouble. We don’t have a predictable formula for the values of variables \(i \) and \(j \) after \(k \) iterations, since how the search range changes depends on the contents of \(L \) and the item being searched for.

We can reconcile the intuition with our more formal approach by explicitly introducing and analysing the behaviour of a new variable. Specifically: let \(r = j - i \) be a variable representing the size of the search range.

(a) Let \(n \) represent the length of the input list \(L \). What is the initial value of \(r \), in terms of \(n \)?

(b) For what values of \(r \) will the loop terminate?
(c) Prove that at each loop iteration, if the item is not found, then the value of \(r \) decreases by at least a factor of 2. More precisely, let \(r_k \) and \(r_{k+1} \) be the values of \(r \) immediately before and after the \(k \)-th iteration, respectively, and prove that \(r_{k+1} \leq \frac{1}{2} r_k \). You can use external properties of floor/ceiling in this question.
(d) Find the exact maximum number of iterations that could occur (in terms of n), and use this to show that the worst-case running time of binary_search is $O(\log n)$.

(e) Prove that the worst-case running time of binary_search is $\Omega(\log n)$. Note that your description of the input family should talk about both the input list, L, and the item being searched for, x.
You may assume that if the loop does not return early, then it runs for $\Omega(\log n)$ iterations.\footnote{Something to think about: why did we explicitly mention this assumption? Why does it not follow from your work in part (c)? \textit{Challenge:} prove the $\Omega(\log n)$ bound.}

(f) Finally, prove that the best-case running time of binary search is $O(1)$ (independent of the size of the input list). Note that proving an upper bound on the best-case is analogous to proving a lower bound on the worst case: both require you to describe a family of inputs whose running time fulfills some property.