CSC165 fall 2019
 end induction...
 ...begin algorithm analysis

Danny Heap
csc165-2019-09@cs.toronto.edu
BA4270 (behind elevators)
Web page:
http://www.teach.cs.toronto.edu/~heap/165/F19/

Using Course notes: more Induction

Outline

notes

Compure Sisere

UNIVERSITY OF TORONTO
\square

every set with n elements has 2^{n} subsets

order of introductions... and intuition

taking binary representation apart

suppose n is a natural number with binary representation:

$$
n=\Sigma_{i=0}^{i=p} b_{i} 2^{i}=b_{p} 2^{p}+b_{p-1} 2^{p-1}+\cdots+2^{1} b_{1}+2^{0} b_{0}
$$

figure out b_{0} based on whether n is odd or even... suggesting

```
def natural_to_binary(n: int) -> str:
    # convert n to equivalent binary string
    bs = str (n % 2)
    n = n // 2
    while n > 0:
        bs = str (n % 2) + bs
        n = n // 2
```

 return bs

time resource

How much time does this take?

```
def f(list_):
    for i in list_:
        print(i)
```


assumptions, assumptions...

- "steps"
- ignore constant factors
- ignore "noise" for small input

We care about growth rate of time consumption

formalizing assumptions

- f absolutely dominates g
- f dominates g up to a constant factor
- f eventually dominates g up to a constant factor

What should domain and range of f, g be?

big-Oh, big-Omega, big-Theta

... and you're started on the Greek alphabet...

$$
f \in \mathcal{O}(g): \exists c, n_{0} \in \mathbb{R}^{+}, \forall n \in \mathbb{N}, n \geq n_{0} \Rightarrow f(n) \leq c g(n)
$$

try to show that $\forall a, b \in \mathbb{R}^{+}$, $a n+b \in \mathcal{O}\left(n^{2}\right)$

$\forall a, b \in \mathbb{R}^{+}, a n+b \in \mathcal{O}\left(n^{2}\right)$

UNIVERSITY OF TORONTO

```
big-Oh hierarchy when 0<a<b
recall \mathcal{O}(f)={g|g:\mathbb{N}->\mp@subsup{\mathbb{R}}{}{+}\wedge\existsc,\mp@subsup{n}{0}{}\in\mp@subsup{\mathbb{R}}{}{+},\foralln\in\mathbb{N},n\geq\mp@subsup{n}{0}{}=>g(n)\leqcf(n)}
\mp@subsup{log}{a}{}n versus log
n}\mp@subsup{}{}{a}\mathrm{ versus }\mp@subsup{n}{}{b}\mathrm{ (polynomial)
a}\mp@subsup{}{}{n}\mathrm{ versus }\mp@subsup{b}{}{n}\mathrm{ (exponential)
\mp@subsup{\operatorname{log}}{a}{}n versus n
n}\mp@subsup{}{}{a}\mathrm{ versus b }\mp@subsup{}{}{n
explore!
```


properties

- reflexivity
- transitivity of big-Oh
- not symmetry (anti-symmetry...)

products and sums

- $a f$
- $f \cdot g$
- $f+g$

UNIVERSITY OF TORONTO

