CSC165 fall 2019

end induction...
...begin algorithm analysis

Danny Heap
csc165-2019-09@cs.toronto.edu
BA4270 (behind elevators)
Web page:

 $http://www.teach.cs.toronto.edu/{\sim}heap/165/F19/$

Using Course notes: more Induction

Outline

notes

every set with n elements has 2^n subsets

order of introductions... and intuition

taking binary representation apart

suppose n is a natural number with binary representation:

$$n = \sum_{i=0}^{i=p} b_i 2^i = b_p 2^p + b_{p-1} 2^{p-1} + \dots + 2^1 b_1 + 2^0 b_0$$

figure out b_0 based on whether n is odd or even... suggesting

```
def natural_to_binary(n: int) -> str:
    # convert n to equivalent binary string
    bs = str(n % 2)
    n = n // 2
    while n > 0:
        bs = str(n % 2) + bs
        n = n // 2
    return bs
```


time resource

```
How much time does this take?
def f(list_):
    for i in list_:
        print(i)
```

assumptions, assumptions...

▶ "steps"

▶ ignore constant factors

▶ ignore "noise" for small input

We care about growth rate of time consumption

formalizing assumptions

ightharpoonup f absolutely dominates g

ightharpoonup f dominates g up to a constant factor

ightharpoonup f eventually dominates g up to a constant factor

What should domain and range of f, g be?

big-Oh, big-Omega, big-Theta

... and you're started on the Greek alphabet...

$$f \in \mathcal{O}(g): \exists \, c, \, n_0 \in \mathbb{R}^+, \forall \, n \in \mathbb{N}, \, n \geq n_0 \Rightarrow f(n) \leq \mathit{cg}\left(n\right)$$

try to show that $\forall a, b \in \mathbb{R}^+$, $an + b \in \mathcal{O}(n^2)$

 $orall a,b\in\mathbb{R}^+$, $an+b\in\mathcal{O}(n^2)$

big-Oh hierarchy when 0 < a < b

```
recall \mathcal{O}(f) = \{g \mid g : \mathbb{N} \to \mathbb{R}^+ \land \exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow g(n) \leq cf(n)\} \log_a n versus \log_b n (logarithmic) n^a versus n^b (polynomial) a^n versus b^n (exponential) \log_a n versus n^a n^a versus n^a explore!
```

properties

► reflexivity

▶ transitivity of big-Oh

▶ not symmetry (anti-symmetry...)

products and sums

$$ightharpoonup f \cdot g$$

$$ightharpoonup f + g$$