CSC165 fall 2019 graph connectivity

Danny Heap
csc165-2019-09@cs.toronto.edu
BA4270 (behind elevators)
Web page:
http://www.teach.cs.toronto.edu/~heap/165/F19/

Using Course notes: graphs

must be connected

$\forall n \in \mathbb{N}, \exists M \in \mathbb{N}, \forall G=(V, E),(|V|=n \wedge|E| \geq M) \Rightarrow G$ is connected?
$\equiv \quad \equiv \quad \supset 口 Q$

must be connected

$\forall n \in \mathbb{N}, \exists M \in \mathbb{N}, \forall G=(V, E),(|V|=n \wedge|E| \geq M) \Rightarrow G$ is connected?
$\equiv \quad \equiv \quad \supset 口 Q$

must be connected

$\forall n \in \mathbb{N}, \exists M \in \mathbb{N}, \forall G=(V, E),(|V|=n \wedge|E| \geq M) \Rightarrow G$ is connected?
$\equiv \quad \equiv \quad \supset 口 Q$

maybe connected

$\forall n \in \mathbb{N}, \exists G=(V, E),|V|=n \wedge|E|=n-1 \wedge G$ is connected

4 三 $>$

must be disconnected

$$
\forall n \in \mathbb{N}, \forall G=(V, E),(|V|=n \wedge|E| \leq n-2) \Rightarrow G \text { is not connected }
$$

steps:

- natural to reason by removing an edge from a connected graph with $n-1$ edges...
- first need some results about which components of connected graphs have redundant edges (cycles)...
- then need some results about connected graphs without cycles (trees)...
- then reason about reducing an arbitrary connected graph to a tree...
whew!

cycle

consecutively adjacent vertices $v_{0}, \ldots, v_{k} \in V \wedge k \geq 3$,
all distinct except $v_{0}=v_{k}$
$\forall G=(V, E), \forall e \in E, G$ connected $\Rightarrow(e$ in a cycle of $G \Leftrightarrow G-e$ connected $)$

tree: connected, acyclic graph

removing any edge from a tree disconnects it
$\forall G=(V, E), G$ is a tree $\Rightarrow|E|=|V|-1$
but first...
$\forall G=(V, E),(G$ is a tree $\wedge|V| \geq 2) \Rightarrow(\exists v \in V, d(v)=1)$

main result...

$\forall n \in \mathbb{N}^{+}, \forall G=(V, E),(G$ is a tree $\wedge|V|=n) \Rightarrow|E|=|V|-1$

UNIVERSITY OF TORONTO

big picture...

UNIVERSITY OF TORONTO

Notes

UNIVERSITY OF TORONTO
\square

