# CSC165 fall 2019 <br> rooted trees / what's next 

# Danny Heap <br> csc165-2019-09@cs.toronto.edu <br> BA4270 (behind elevators) <br> Web page: <br> http://www.teach.cs.toronto.edu/~heap/165/F19/ 

Using Course notes: trees

## distinguish a root

add notions of distance, hierarchy/direction to trees by rooted tree: a tree with

- exactly one vertex labelled (distinguished) as root, if the tree has at least one vertex
- OR no vertices (a convenience for proofs and algorithms)


## jargon

- parent
- child
- ancestor
- descendant
- arity (branching factor)
- height, denote as height( $G$ )


## easy-ish facts

- every rooted tree with $n \geq 2$ vertices has height at least 2
- some rooted tree with $n \geq 2$ vertices has height exactly 2
- every rooted tree with $n$ vertices has height no more than $n$
- some rooted tree with $n$ vertices has height exactly $n$


## binary rooted trees

maximum degree $3 \equiv$ maximum of 2 children
$\forall h \in \mathbb{N}, \forall G=(V, E)(G$ rooted, binary tree $\wedge \operatorname{height}(G) \leq h) \Rightarrow|V| \leq 2^{h}-1$

## later topics...

- prove correctness
- analyze recursive runtime
- computability
- intractability
- public-key cryptography


## problem with keys... e.g. Vigenere cipher


key: thewalrusandthecarpenter
cleartext: ifsevenmaidswithsevenmopssweptforhalfayear
ifsevenmaidswithsevenmopssweptforhalfayear thewalrusandthecarpenterthewalrusandthecar
how do you securely exchange keys?

## public/private

share public key with the world
keep private key secret
allows:
authentication
encryption

## RSA

need: text $\rightarrow$ integer, integer $\rightarrow$ text reversible padding scheme

1. randomly choose large primes $p$ and $q$
2. $n=p q$ (key length is $n$ in bits...)
3. $L=(p-1)(q-1)$
4. choose $1<e<L$ so that $\operatorname{gcd}(e, L)=1$
5. compute inverse, $d \equiv e^{-1}(\bmod L)$, i.e. $d e \equiv 1(\bmod L)$ (notes Example 2.19 works for co-prime!)
publish: $e, n$
keep private $d, p, q, L$.
$m=$ text $\rightarrow$ integer(message)
encrypt: $c \equiv m^{e}(\bmod n)$
decrypt: message $\left.=\operatorname{integer} \rightarrow \operatorname{text}\left(c^{d}\right)(\bmod n)\right)$

## it works... how?

Use results from this course... mostly

- $c^{d} \equiv m^{e d}(\bmod n)$
- $n=p q$, and $e d \equiv 1(\bmod (p-1)(q-1))$, i.e.
$e d=1+k(p-1)(q-1)$
- $m^{e d} \equiv m \times m^{(p-1)(q-1) k}(\bmod p) \equiv m \times 1^{(q-1) k}(\bmod p)$
(problem set \#3, Q1(c) almost...) $\equiv m(\bmod p)$
- also $m^{e d} \equiv m(\bmod q)$
- (problem set \#2, Q2(a)): $m^{e d} \equiv m(\bmod p q) \equiv m$ $(\bmod n)$.


## Notes

UNIVERSITY OF TORONTO
$\square$

