CSC165 fall 2019
 average/summation/graphs

Danny Heap
csc165-2019-09@cs.toronto.edu
BA4270 (behind elevators)
Web page:
http://www.teach.cs.toronto.edu/~heap/165/F19/

Using Course notes: average analysis; graphs

average...

$$
\mathcal{I}_{f, n}=\{i \mid i \text { is an input to } f \wedge|i|=n\}
$$

def has_even(number_list):
for number in number_list:
if number \% 2 == 0 :
return True
return False

average...

$$
\mathcal{I}_{f, n}=\{i \mid i \text { is an input to } f \wedge|i|=n\}
$$

def has_even(number_list):
for number in number_list:
if number \% 2 == 0 :
return True
return False

average...

$$
\mathcal{I}_{f, n}=\{i \mid i \text { is an input to } f \wedge|i|=n\}
$$

def has_even(number_list):
for number in number_list:
if number \% 2 == 0 :
return True
return False

summation...

from notes...

$$
\sum_{i=0}^{i=n-1} i r^{i}=\frac{n r^{n}}{r-1}+\frac{r-r^{n+1}}{(r-1)^{2}}
$$

UNIVERSITY OF TORONTO

summation...

from notes...

$$
\sum_{i=0}^{i=n-1} i r^{i}=\frac{n r^{n}}{r-1}+\frac{r-r^{n+1}}{(r-1)^{2}}
$$

UNIVERSITY OF TORONTO

finding a needle...

...when you know it's in the haystack
\# num_list is a list of numbers,
\# a permutation of $\{1,2,3, \ldots, n\}$
def find_one(num_list):
for i in range(len(num_list)):
if num_list[i] == 1:
return i

graphs (discrete ones)...

 what can you do with them?- represent friendships
- represent lecture sections
- represent tasks \leftrightarrow person

definitions...

$$
G=(V, E) \in \mathcal{G}
$$

university of toronto

degree，degree－sum，max number of edges？

UNIVERSITY OF TORONTO
」 ミ 三 $\bar{\equiv}$

paths, connectedness... in $G=(V, E)$

A path from u to v : Distinct vertices v_{0}, \ldots, v_{k} in V where:
$\rightarrow u=v_{0}, v=v_{k}$
$>$ if $0 \leq i \leq k-1$, then $\left(v_{i}, v_{i+1}\right) \in E$
We allow $k=0$ - there is a path from v to itself
path length from u to v : number of edges in path from u to v
u, v are connected: There is a path from u to v.
graph G is connected: every pair $u, v \in G$ is connected

$\forall n \in \mathbb{N}, \exists M \in \mathbb{N}, \forall G=$ $(V, E),(|V|=n \wedge|E| \geq M) \Rightarrow G$ is connected?

Notes

UNIVERSITY OF TORONTO
\square

