CSC165 fall 2019

Mathematical expression

Danny Heap csc165-2019-09@cs.toronto.edu BA4270 (behind elevators) Web page: http://www.teach.cs.toronto.edu/~heap/165/F19/

Using Course notes: Prologue, Mathematical Expression

(日)、(四)、(日)、(日)、

ъ

Introduction

sets

functions

sums and products

propositional logic

notes

what's CSC165?

a course about expression (communication):

▶ with and through programs

with developers

knowing what you mean

understanding what others mean

analyzing arguments, programs

understanding cool domains (number theory, graphs, 1..)

(日)、(四)、(日)、(日)、

ъ

CS needs math:

- graphics
- verification
- cryptography
- artificial intelligence
- complexity
- numerical analysis
- networking
- databases

:

objectives

by the end of this course you will able to

- express mathematical ideas precisely
- read and understand other people's proofs
- read and identify flaws in incorrect proofs
- express your own proofs
- analyze (some) program complexityy
- engage with number theory, graph theory

(日)、(四)、(日)、(日)、

doing well in CSC165

Doing well has two aspects: one being recognized as doing well by being awarded credit (grades), another being able to retain concepts and tools for use later on. Here's how to do both:

- build a network of good peers
- read the course web page, and emails, regularly; understand the course information sheet.
- spend enough time; we assume an average of 8 hours/week
 4 in lecture/problem sessions, 4 reviewing preparing assignments

・ロト ・ 一下・ ・ ヨト・・

ask questions; make your own annotations.

typical week workflow

reading and prep

lectures

work sheet(s)

problem sets — start early!

tests — study groups!

NB: This exam for this course is based on... this course! The best preparation is re-working all the materials listed above **not** old exams...

・ロト ・ 一下・ ・ ヨト・・

프 🖌 🛛 프

balance

- computers are precise in identical environments they execute identical instructions identically
- humans are as precise as necessary, and different human audiences require different levels of precision
- ▶ The *really* difficult job is finding the right level of precision. Too much precision introduces unbearable tedium; too little introduces unfathomable ambiguity.
- Proofs are primarily works of literature: they communicate with humans, and the best proofs have suspense, pathos, humour and surprise. As a side-effect, proofs present a convincing argument for some fact.

A 日 > A 同 > A 国 > A 国 >

building sets...in math

English prose

list elements

set comprehension

some standard sets

boolean operations on sets

operations that produce new sets

Computer Science UNIVERSITY OF TORONTO

sets of sets...

Computer Science UNIVERSITY OF TORONTO

size of sets

specify functions

ordered pairs

from/to, domain/co-domain, arrow notation

one-to-one, onto, etc.

sums, products

manipulating sums and products

propositional logic

not \neg , and \land

or $\lor,$ implies \Rightarrow

Notes

