
CSC165H1, Fall 2019 Problem Set 4 Sample Solutions

CSC165H1: Problem Set 4 Sample Solutions

Due December 4, 2019 before 4pm

Note: solutions are incomplete, and meant to be used as guidelines only. We encourage you to ask

follow-up questions on the course forum or during o�ce hours.

1. [12 marks] algorithm analysis

Read over the code for has odd. Assume that number list contains entries from f0; 1; 2; 3; 4g, with duplicates

allowed. Answer the questions below, assuming that n = len(number list)

1 def has_odd(number_list) -> bool:

2 for i in range(len(number_list)):

3 if number_list[i] % 2 == 1:

4 return True

5 return False

(a) [3 marks] Find a good upper bound, U(n), forWChas odd(n). Prove that your upper bound is correct.

Solution

sample solution:

header: Let n 2 N. Let UL be an arbitrary list of n numbers from f0; 1; 2; 3; 4g. I want to show

that has odd takes no more than U(n) = n+ 1 steps.

body: I assign 1 step to the body of the loop. This means that has odd takes no more than n

steps to examine every member of list UL, and no more than 1 more step to return False.

In all, no more than U(n) = n + 1 for any list of length n, including a list that generates

the worst case. steps. �

(b) [3 marks] Find a lower bound, L(n), for WChas odd(n) that is in the same asymptotic complexity

class as U(n) (that's what I mean by \good" in the previous part). Prove that your lower bound is

correct, then state and justify a simple big-Theta complexity class for WChas odd(n)

Solution

sample solution:

header: Let n 2 N. Let LL be a list consisting of n 2s. Then has odd examines all n entries in

LL, at a cost of n steps, and then takes one more step to return False. Thus LL requires at

least L(n) = n+ 1 steps, and hence so does any list that generates the worst case number

of steps.. �

Both U(n) and L(n) are in �(n).

(c) [3 marks] If has odd returns True after examining k entries in number list, count this as k steps. If an

has odd examines all n entries in number list and proceeds to return False count this as n + 1 steps.

Using these assumptions, show how to calculate the average number of steps for all inputs to has odd

of length 2.
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Solution

sample solution: Here are the run-time costs broken down according to how many steps it takes

to either return True or else return False:

� There are 2� 5 lists with an odd number in the �rst position: a choice of 2 in the �rst

entry, times a choice of 5 for the second position. Each of these costs 1 step to return

True.

� There are 3� 2 lists with the �rst occurrence of an odd number in the second position:

a choice of 3 even numbers in the �rst position, times a choice of 2 odd numbers in the

second position. Each of these costs 2 steps to return True.

� There are 3� 3 lists with no occurrence of an odd number: a choice of 3 even numbers

in the �rst position times a choice of 3 even numbers in the second position. each of

these costs 3 steps to return False.

This makes the sum of steps over all lists:

10� 1 + 6� 2 + 9� 3 = 49

Dividing by the total number of lists, 25, gives an average number of steps of:

49

25

...or a bit less than 2.

(d) [3 marks] Use the step-counting assumptions in the previous part to devise a formula for the average

number of steps for all inputs to has odd of length n. You may �nd it useful to recall (where r is

some positive real number)
i=n�1X
i=0

iri =
nrn

r � 1
+
r � rn+1

(r � 1)2

Show your work.

Solution

sample solution: If the �rst occurrence of an odd number occurs at position i in an input list, then

there are 3i�1 possible entries before position i (even numbers) and 5n�i possible entries

after position i (all 5 numbers). In position i itself there are 2 possibilities: 1 or 3. Each of

these lists requires i steps to process.

In addition, there are 3n lists that have no odd numbers, and require n+1 steps to process.
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The sum of steps must be divided by 5n, the total number of lists.

1

5n

 
i=nX
i=1

i(3i�1)(2)5n�i
!
+
3n(n+ 1)

5n
=

2

3

 
i=nX
i=1

i(3=5)i
!
+
3n(n+ 1)

5n

# factor out 2; 3�1; and 5n

=
2

3

 
(n+ 1)(3=5)n+1

�(2=5)
+
(3=5)� (3=5)n+2

(4=25)

!
+
3n(n+ 1)

5n

# sub n+ 1 for n in formula...

= �(n+ 1)(3=5)n + 5=2� (3=2)(3=5)n + (n+ 1)(3=5)n

=
5� 3(3=5)n

2

2. [18 marks] graph connectivity

Answer the questions below. Assume jV j is �nite and positive.

(a) [3 marks] Prove that for all undirected graphs G = (V;E), if C is a cycle in G and e is an edge in

C, then removing e leaves C connected. Notice that this is used in Example 6.8, so you cannot use

Example 6.8 as proof, nor can you use the fact that this is asserted without proof in the paragraph

just before Example 6.8.

Solution

sample solution:

header: Let G = (V;E) be an undirected graph, and C = v0; : : : ; vk�1; vk = v0 be a cycle in

G with all vertices distinct except v0 = vk, and edges (vi; vi+1) for all 0 � i < k. Let

e = (vj ; vj+1), 0 � j < k be an arbitrary edge in C. Let C 0 = C � e, the cycle after

removing e. Let vh; vm, 0 � h < m < k be two arbitrary, distinct vertices in C. I want to

show that there is a path in C 0 between vh and vm.

body: There are three cases to consider, depending on where vh and vm lie with respect to

removed edge e = (vj ; vj+1).

case m � j: Then vh; : : : ; vm is a subsequence of the distinct vertices in C, and 8h � n < m

edge (vn; vn+1) is inherited from C and has not been removed, since m � j. This forms

a path from vh to vm (and vice-versa in an undirected graph).

case j + 1 � h: Then vh; : : : ; vm is a subsequence of the distinct vertices in C, and 8h �

n < m edge (vn; vn+1) is inherited from C and has not been removed, since j + 1 � h.

This forms a path from vh to vm (and vice-versa in an undirected graph).

case h � j ^ j + 1 � m: Then vm; : : : ; vk = v0 is a sequence of vertices inherited from C,

with corresponding connecting edges, connecting vm to v0. Also v0; : : : ; vh is a subse-

quence of the vertices from C, with corresponding connecting edges connecting v0 to vh.

By transitivity of connectedness, vm is connected to vh (and vice-versa in undirected

graphs).

In all three possible cases C 0 = C � e is connected. �
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(b) [3 marks] Prove or disprove: In every undirected graph G = (V;E) with all vertices having degree at

least bjV j=3c, for every 3 distinct vertices u; v; w 2 V there is a path of length no more than 2 from

u to v, or from v to w, or from w to u.

Solution

sample solution:

header: Let G = (V;E) be an arbitrary undirected graph. Assume 8v 2 V; d(v) � bjV j=3c. Let

u; v; w 2 V be distinct vertices. I will show that either u and v share a neighbour, or that

u and w share a neighbour, or that v and w share a neighbour.

body: There are two cases to consider.

case u and v share a neighbour: Then we are done.

case u and v do not shaare neighbour: Let N(u) = fug [ fx : x 2 V ^ (u; x) 2 Eg, N(v) =

fvg [ fy : y 2 V ^ (u; y) 2 Eg, and N(w) = fwg [ fz : z 2 V ^ (u; z) 2 Eg | the

neighbourhods of u; v, and w. Since u and v share no neighbours N(u) and N(v) are

disjoint, so

jN(u) [N(v)j � 2(bjV j=3c+ 1) � 2((jV j � 2)=3 + 1)

# 9q; r 2 Z; bjV j=3c = b(3q + r)=3c = q ^ 3 > r � 0

�jN(u) [N(v)j � �2((jV j � 2)=3 + 1) # multiply by � 1

jV j � jN(u) [N(v)j � jV j � 2((jV j � 2)=3 + 1) = (jV j � 2)=3 � bjV j=3c

But then there are not enough vertices in V n (N(u) [N(v)) for all of N(w), so N(w)

must share at least one neighbour with either N(u) or N(v). �

(c) [3 marks] Prove or disprove: If graph G = (V;E) has an odd number of vertices with even degree,

then jV j is odd.

Solution

sample solution: First I need a lemma: Every graph G = (V;E) has an even number of vertices

of odd degree. I prove this by induction on jEj, the number of edges.

header: De�ne P (m) :"Every graph G = (V;E) with jEj = m has an even number of vertices of

odd degree."

base case P (0): A graph with 0 edges has 0 (an even number) vertices of odd degree, which

veri�es P (0).

inductive step: Let m 2 N and assume P (n). Let G = (V;E) be an arbitrary graph with m + 1

edges. Since m + 1 > 0, we can remove one edge, (u; v) creating graph G0 with m edges,

so by the inductive hypothesis G0 has an even number of vertices of odd degree. There are

three cases to consider:

case u; v both of odd degree in G0: Then G has two fewer vertices of odd degree than G0 does.

That is, there exists a natural number k so that G0 has 2k vertices of odd degree, and

k > 0. Then G has 2(k � 1) vertices o� odd degree, also an even number.

case u; v both of even degree in G0: Then G has two more vertices of odd degree than G0 does.

That is, there exists a natural number k0 so that G0 has 2k0 vertices of odd degree. Then
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G has 2(k0 + 1) vertices of odd degree, also an even number.

case one of u; v has odd degree, the other even degree in G0: Then the parity of u and v's de-

gree is switched in G versus G0, and they have exactly the same number (an even one)

of vertices of odd degree.

In all three possible cases G has an even number of vertices of odd degree. �

main proof: Let G = (V;E) be a graph with an odd number of vertices of even degree, so there

is some natural number h such that G has 2h + 1 vertices of even degree. By the lemma

above G has an even number of vertices of odd degree, so there is some natural number i

such that G has 2i vertices of odd degree. All together G has 2h + 1 + 2i = 2(h + i) + 1

vertices, an odd number. �

(d) [3 marks] Prove or disprove: Every undirected graph G = (V;E) with at least 13 vertices, all vertices

having degree at least jV j � 7, is connected.

Solution

sample solution: I will prove the contrapositive:

8G = (V;E); G is not connected) jV j < 13 _ (9v 2 V; d(v) < jV j � 7)

header: Let G = (V;E) be an arbitrary graph disconnected graph. In other words, there exist

u; v 2 V that are not connected. Let N(u) = fug [ fw 2 V : (u;w) 2 Eg and N(v) =

fvg [ fx 2 V : (v; x) 2 Eg. I want to show that either jV j < 13 or jN(u)j < jV j � 6 (so

jfw 2 V : (u;w) 2 Egj = d(u) < jV j � 7) or jN(v)j < jV j � 6 (so jfx 2 V : (v; x) 2 Egj =

d(v) < jV j � 7).

body: There are three cases to consider:

case jV j < 13: In this case the disjunction we want follows.

case jV j � 13 ^N(u) < jV j � 6: In this case the disjunction we want follows.

case jV j � 13 ^N(u) � jV j � 6: Since u and v are disconnected, N(u) andN(v) are disjoint,

so the vertices of N(v) must be in V nN(u). The number of vertices available to N(v)

is therefore:

N(v) � jV j � jN(u)j � jV j � (jV j � 6) = 6

d(v) = N(v)� 1 � 5

jV j � 13

jV j � 7 � 13� 7 = 6 > 5 � d(v)

In this case the disjunction we want follows.

In all three possible cases the conclusion follows. �

(e) [3 marks] Prove that every undirected graph G = (V;E) with every vertex having degree at least 5,

has a cycle.

Solution
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sample solution: I will prove:

8G = (V;E); (8v 2 V; d(v) � 5)) G has a cycle:

header: Let G = (V;E) be an arbitrary undirected graph. Assume that every vertex in V has

degree at least 5. I want to show that there is a cycle in G.

body: Let v 2 V � Let P = v = v0; : : : ; vk be a path of maximum length, k starting at v. I

know that such a maximum exists because with no more than jV j distinct vertices available

for a path, the length can be no more than jV j � 1. Also, k � 2, since v0 has at least 5

neighbours, and each of these 5 neighbours has at least 4 neighbours other than v0, so the

maximum length is no smaller than 2. Since d(vk) � 5 vertex vk has at least 4 neighbours

other than its predecessor vk�1. All of vk's neighbours must lie on P , since otherwise we

could extend the length of P by one, contradicting our choice of a maximal path. Choose

vi 2 P so that i 6= k� 1 and vi is a neighbour of vk. Then vk; vi; : : : ; vk�1; vk is a cycle with

edges (vk; vi) and (vi; vi + 1); :::; (vk�1; vk), and at least 3 distinct vertices since vi 6= vk�1
and vi 6= vk. �.

�

I am assuming that G is non-empty

(f) [3 marks] Prove or disprove: If G = (V;E) is an undirected graph where every vertex has degree at

least 4 and u 2 V , then there are at least 64 distinct paths in G that start at u.

Solution

statement: I will prove:

8G = (V;E); (8v 2 V; d(v) � 4)) 8u 2 V;9S = fp : p is a path originating at ugw^jSj � 64

header: LetG = (V;E) be an arbitary undirected graph. Assume that each vertex inG has degree

at least 4. Let u be an arbitrary vertex in G, and let S = fp : p is a path originating at ug.

I want to show that jSj � 64.

body: Since d(u) � 4, u has (at least) 4 neighbours, so there are 4 paths of length 1 in S. Each

of the terminal vertices of the 4 paths of length 1 in S also have 4 neighbours, so each have

at least 3 neighbours other than u, so there are 12 paths of length 2 in S. Each of the

terminal vertices of the 12 paths of length 2 in S have at least 2 neighbours other than their

2 predecessors on their path, so there are 24 paths of length 3 in S. Finally, each of the

terminal vertices of the 24 paths of length 3 in S have at least one neighbour other than

the 3 that precede them in their path, so there are 24 paths of length 4 in S. Each of these

paths is distinct owing to di�ering in at least one vertex, so jSj � 4 + 12 + 24 + 24 = 64

paths without even counting the path u itself (of length 0). �
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