
CSC165H1, Fall 2019 Problem Set 2 Sample Solutions

CSC165H1: Problem Set 2 Sample Solutions

Due October 23 2019 before 4 pm

Note: solutions are incomplete, and meant to be used as guidelines only. We encourage you to ask

follow-up questions on the course forum or during o�ce hours.

1. [9 marks] mod 3 Prove each of the following statements. You may use the Quotient Remainder Theorem

from the course notes.

(a) [3 marks] Every integer n satis�es either 9 j n2 or 3 j n2 � 1.

Solution

statement:

8n 2 Z; 9 j n2 _ 3 j n2 � 1

header: Let n 2 Z. I want to show that either 9 j n2 or 3 j n2 � 1.

body: By the Quotient Remainder Theorem there are integers q and r such that n = 3q+ r and

r 2 f0; 1; 2g. Consider the three possible cases:

case r = 0: Here n2 = 9q2, so 9 j n2.

case r = 1: Here n2 � 1 = 9q2 + 6q, which can be factored as 3(3q2 + 2q), so 3 j n2 � 1.

case r = 2: Here n2 � 1 = 9q2 + 12q + 4 � 1, which can be factored as 3(3q2 + 4q + 1), so

3 j n2 � 1.

In each of the three possible cases either 9 j n2 or 3 j n2 � 1. �

(b) [3 marks] No integer n satis�es n2 � 2 (mod 3).

Solution

statement: This is the 
ip side of the previous question.

8n 2 Z; n2 6� 2 (mod 3)

header: Let n 2 Z. I want to show that n2 6� 2 (mod 3).

body: By the Quotient Remainder Theorem there are integers q and r such that n = 3q+ r and

r 2 f0; 1; 2g. Consider the three possible cases:

case r = 0: Here n2 = 9q2 = 3(3q2) + 0, so 3 j n2 � 0. By the contrapositive of the

theorem (course notes, proved in lecture) saying linear combinations of multiples are

also multiples:

3 - 2) 3 -
h
(n2 � 0)� (n2 � 2)

i
) 3 - n2 � 0 _ 3 - n2 � 2

The hypothesis is true, and since 3 j n2 � 0 we must have 3 - n2 � 2, that is n2 6� 2

(mod 3).

case r = 1: Here n2� 1 = 9q2+6q = 3(3q2+2q), so 3 j n2� 1. By the contrapositive of the
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theorem mentioned in the last part:

3 - 1)
h
(n2 � 1)� (n2 � 2)

i
) 3 - n2 � 2 _ 3 - n2 � 1

The hypothesis is true, and since 3 j n2 � 1, we must have 3 - n2 � 2, that is n2 6� 2

(mod 3).

case r = 2: Here n2 � 1 = 9q2 + 12q + 4 � 1 = 3(3q2 + 4q + 1), so 3 j n2 � 1. By the

contrapositive of the theorem referred to (twice!) above,

3 - 1)
h
(n2 � 1)� (n2 � 2)

i
) 3 - n2 � 2 _ 3 - n2 � 1

The hypothesis is true, and since 3 j n2 � 1, we must have 3 - n2 � 2, that is n2 6� 2

(mod 3).

In all three possible cases n2 6� 2 (mod 3). �

(c) [3 marks] Every integer n satis�es either n2 � 0 (mod 4) or n2 � 1 (mod 4).

Solution

statement:

8n 2 Z; n2 � 0 (mod 4) _ n2 � 1 (mod 4)

header: Let n 2 Z. I want to show that n2 � 0 (mod 4) or n2 � 1 (mod 4).

body: By the Quotient Remainder theorem there are integers q and r such that n = 4q + r and

r 2 f0; 1; 2; 3g. There are four possible cases to consider:

case r = 0: Here n2 � 0 = 16q2 = 4(4q2), so 4 j n2 � 0, that is n2 � 0 (mod 4).

case r = 1: Here n2 � 1 = 16q2 + 8q = 4(4q2 + 2q), so 4 j n2 � 1, that is n2 � 1 (mod 4).

case r = 2: Here n2 � 0 = 16q2 + 16q + 4 = 4(4q2 + 4q + 1), so 4 j n2 � 0, that is n2 � 0

(mod 4).

case r = 3: Here n2 � 1 = 16q2 + 24q + 8 = 4(4q2 + 6q + 2), so 4 j n2 � 1, that is n2 � 1

(mod 4).

In all four possible cases n2 � 0 (mod 4) or n2 � 1 (mod ). �

2. [6 marks] more congruence.

(a) [3 marks] Prove that if p1 and p2 are distinct primes, and a and b are any integers, then

a � b (mod p1p2), a � b (mod p1) ^ a � b (mod p2)

Solution

statement:

8a; b;2 Z; 8p1; p2 2 N;

Prime(p1) ^ Prime(p2) ^ p1 6= p2

) (a � b (mod p1p2), a � b (mod p1) ^ a � b (mod p2))

Page 2/10



CSC165H1, Fall 2019 Problem Set 2 Sample Solutions

header: Let a; b 2 Z and p1; p2 2 N. Assume Prime(p1); Prime(p2) and p1 6= p2.
� I want to

show that:

a � b (mod p1p2), a � b (mod p1) ^ a � b (mod p2)

body: I begin with the ) direction of the biconditional:

a � b (mod p1p2)) a � b (mod p1) ^ a � b (mod p2)

header: Assume a � b (mod p1p2), so 9k 2 Z; kp1p2 = a� b. Let k1 = kp1 and let k2 = kp2.

I want to show that k1p2 = a� b = k2p1, so a � b (mod p1) ^ a � b (mod p2).

body:

k1p2 = kp1p2 = a� b = kp2p1 = k2p1 �

Now for the ( direction of the biconditional:

a � b (mod p)1 ^ a � b (mod p)2 ) a � b (mod p1p2)

header: Assume a � b (mod p)1 ^ a � b (mod p)2, so 9k1; k2 2 Z; p1k1 = a � b = p2k2. I

want that 9k3 2 Z; k3p1p2 = a� b.

body: By Theorem 2.3 (page 53 course notes), where p2 and k2 play the roles of a and b:

p1 - p2 ^ p1 - k2 ) p1 - p2k2

The contrapositive of this is:

p1 j p2k2 ) p1 j p2 _ p1 j k2

I know p1k1 = p2k2, the hypothesis is true, and since p1 - p2 (they are distinct primes),

that just leaves p1 j k2, so 9k3 2 Z; p1k3 = k2, and k3p1p2 = k2p2 = a � b. Thus a � b

(mod p1p2). �

�Assume the hypothesis, since otherwise the implication is vacuously true.

(b) [3 marks] Prove that if p1 and p2 are distinct primes, and a and b are any integers, there exists exactly

one integer x that satis�es:

x � a (mod p1) ^ x � b (mod p2) ^ 0 � x ^ x < p1p2

Hint: If two di�erent integers x1 and x2 satisfy the �rst two conditions, what can you prove about

their remainder (mod p1p2)?

Solution

statement:

8a; b 2 Z;8p1; p2 2 N; Prime(p1) ^ Prime(p2) ^ p1 6= p2

) 9x 2 Z; x � a (mod p1) ^ x � b (mod p2) ^ 0 � x ^ x < p1p2

^8y 2 Z; (y � a (mod p1) ^ y � b (mod p2) ^ 0 � y ^ y < p1p2 ) y = x)

header: Let a; b 2 Z; p1; p2 2 N. Assume Prime(p1) ^ Prime(p2) ^ p1 6= p2. From problem

set #1 I know there exists x0 2 Z; x0 � a (mod p1) ^ x0 � b (mod p)2. By the Quotient
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Remainder theorem I know there exists unique integers q; x such that:

x = x0 � qp1p2 ^ 0 � x < p1p2;

i.e. x is the unique remainder of x0 modulo p1p2. I want to show that:

x � a (mod p1) ^ x � b (mod p2) ^ 8y 2 Z;

(y � a (mod p1) ^ y � b (mod p2) ^ 0 � y ^ y < p1p2 ) y = x)

�

body: Since x0 � a (mod p1) we know there exists k1 2 Z; p1k1 = x0�a. so substituting qp1p2+x

for x0 (from the Quotient Remainder theorem), I have:

p1k1 = qp1p2 + x� a) p1(k1 � qp2) = x� a;

so x � a (mod p1). �

Similarly I know 9k2 2 Z; k2p2 = x0 � b, so substituting qp1p2 + x for x0 I have:

p2k2 = qp1p2 + x� b) p2(k2 � qp1) = x� b;

so x � b (mod p2). �

It remains to prove:

8y 2 Z; (y � a (mod p1) ^ y � b (mod p2) ^ 0 � y ^ y < p1p2 ) y = x)

header: Let y 2 Z; y � a (mod p1) ^ y � b (mod p2) ^ 0 � y ^ y < p1p2. I want to show

y = x.

body: Since y � a (mod p1) and a � x (mod p1), by the lemma used in my solution for

3(c) in problem set #1, y � x (mod p1). Similarly, y � x (mod p2). Using the result

from the previous part of this question, this implies y � x (mod p1p2). This means

that p1p2 j y � x, so 9k3 2 Z; k3p1p2 = y � x. I will show that k3 = 0

k3p1p2 = y � x

k3p1p2 + x = y

k3 < 1 # y < p1p2 ^ x � 0 by assumption

k3 > �1 # y � 0 ^ x < p1p2 assumption

k3 = 0

x = y �

�By choice of x I already know 0 � x < p1p2

3. [9 marks] alternations...

For each of the following statements, decide whether you believe it is true or false. If you believe it is

true, prove the statement. If you believe it is false, negate the statement and prove the negation.

You need to approach each part seriously. There are no marks for \proving" a false statement true, or

\proving" a true statement false.

(a) [3 marks]

8e 2 R+;9d 2 R+;8x 2 R; jxj < d) j7xj < e
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Solution

statement: The statement is true, so I need to prove:

8e 2 R+;9d 2 R+;8x 2 R; jxj < d) j7xj < e

header: Let e 2 R+. Let d = e=7. Let x 2 R. Assume jxj < d, where jxj is:

jxj =

8<
:
�x if x < 0

x if x � 0

I want to show j7xj < e.

body: Consider two cases:

x < 0 ^ jxj < d) �x < d

�7x < 7d

j7xj < 7d = e #d = e=7 ^ 7x < 0) j7xj = �7x

x � 0 ^ jxj < d) x < d

7x < 7d

j7xj < 7d = e #d = e=7 ^ 7x � 0) j7xj = 7x

In either of the two possible cases j7xj < e. �

(b) [3 marks]

9d 2 R+; 8e 2 R+;8x 2 R; jxj < d) j7xj < e

Solution

statement: The claim is false, so I need to prove its negation:

8d 2 R+; 9e 2 R+;9x 2 R; jxj < d ^ j7xj � e

header: Let d 2 R+. Let e = x = d=7. I want to show that jxj < d and j7xj � e.

body:

1=7 < 1

d=7 < d

x = jxj < d # x = d=7 � 0) x = jxj

7x = d > d=7 = e # x = e = d=7

j7xj � e �

(c) [3 marks]

8d 2 R+; 9e 2 R+;8x 2 R; jxj < d) j7xj < e
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Solution

statement: The statement is true. I will prove:

8d 2 R+; 9e 2 R+;8x 2 R; jxj < d) j7xj < e

header: Let d 2 R+. Let e = 7d. Let x 2 R. Assume jxj < d, so either x < 0 and so jxj = �x < d,

or x � 0, so jxj = x < d. I want to show that j7xj < e.

body: I have two possibilities to check:

case x < 0) jxj = �x < d

�7x < 7d

j7xj < 7d = e # 7x < 0) j7xj = �7x < 7d

case x � 0) jxj = x < d

7x < 7d

j7xj < 7d = e 7x � 0) j7xj = 7x < 7d

In both of the possible cases j7xj < e. �

4. [6 marks] a prime example...

Euclid proved that there are in�nitely many prime numbers, and this is the approach used in the course

notes Theorem 2.3. In the questions below you may use Exercise 2.19 on modular arithmetic, and the

divisibility of linear combinations.

(a) [3 marks] Prove there are in�nitely many primes congruent to 5 (mod 6). Hint: Think about the

technique of Theorem 2.3 in the course notes, and also that there are other arithmetic manipulations

other than adding one, such as multiplying by 5.

Solution

statement: De�ne the set of all primes congruent to 5 (mod 6) as P . I will prove:

jP j =1

... by assuming, for the sake of contradiction, its negation:

9n 2 N; jP j = n

header: Let n 2 N such that jP j = n,that is P = fp1; p2; : : : ; png, where each pi is prime and

congruent to 5 (mod 6). I want to show that this leads to a contradiction.

body: Consider the number

m = 6(p1 � p2 � � � � � pn)� 1 = 6(p1 � p2 � � � � � pn � 1) + 5
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Let j = (p1 � p2 � � � � � pn � 1), and m = 6j + 5. Also notice that each pi 2 P does divide

6(p1 � p2 � � � � � pn) but does not divide m, since

pi j 6(p1 � p2 � � � � � pn) ^ pi j 6(p1 � p2 � � � � � pn)� 1) pi j 1 : : :

... since linear combinations of multiples are also multiples. Also m > 1, since one of the

pi is 5, so m can be no smaller than 6 � 5 � 1 = 29. This means that m has one or more

prime factors, and none of them are elements of P . I want to show that at least one of the

prime factors is congruent to 5 (mod 6).

Let p 2 N be some prime factor of m. By the Quotient Remainder Theorem p there are

integers q; r such that p = 6q + r, and there are six possibilities to consider, depending on

the value of r (which must be in the interval [0; 6).

case p = 6q + 0: There are no primes divisible by 6.

case p = 6q + 2 = 2(3q + 1): This prime is even, so it cannot be a factor of 6j + 5 = 2(3j +

2) + 1, an odd number.

case p = 6k + 3 = 3(2q + 3): This is a multiple of 3, whereas m = 6j + 5 = 3(2j + 1) + 2

has remainder 2 when divided by 3.

case p = 6q + 4 = 2(3q + 2): This prime is even, so it cannot be a factor of 6j + 5, an odd

number.

case p = 6k + 1: This is one of two possible cases to consider.

case p = 6k + 5: This is the second of two possible cases to consider.

If all prime factors of m were congruent to 1 (mod 6), their product m would also be con-

gruent to 1.� That means thatm has at least one prime factor congruent to 5 (mod 6).! 

Contradiction! Set P was assumed to contain all prime numbers congruent to 6 (mod 5),

and no factors of m are also elements of P .

Since assuming P to be �nite leads to a contradiction, that assumption is false and P has

in�nitely many elements. �

�Proof by induction, using Exercise 2.19(3)

(b) [3 marks] Prove or disprove that for any natural number n there is a natural number m that is not

prime, is larger than n, and with m � 5 (mod 6).

Solution

statement: The claim is true, so I will prove:

8n 2 N;9m 2 N;:Prime(m) ^m > n ^m � 5 (mod 6)

header: Let n 2 N. Let m = 30(n+ 1) + 5. I want to show that:

:Prime(m) ^m > n ^m � 5 (mod 6)
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body:

m = 30(n+ 1) + 5 = 5(6(n+ 1) + 1) ) 5 j m

1 < 5 ^ 5 < m # n � 0) m � 35

:Prime(m) # de�nition of Prime(m)

29n � 0 # n � 0

29n+ 35 > 29n � 0

29n+ n+ 35 = 30n+ 35 = m > n

m� 5 = 6(5(n+ 1)) ) 6 j m� 5

m � 5 (mod 6) �

5. [3 marks] subsets If a set S has n elements, how many subsets of size 4 does it have? Investigate this for

sets of size 0, 1, 2, 3, 4, and 5, then make a conjecture. Prove your conjecture using simple induction. You

may not use any external facts or techniques from combinatorics, but you may assume (without proof)

the fact that a set with n elements has n(n� 1)(n� 2)=6 subsets of size 3.

Solution

Sets of size 0, 1, 2, 3 have 0 subsets of size 4. Sets of size 4 have 1 subset (themself) of size 4. Sets

of size 5 have 5 subsets of size 4 (one for each possibility of omitting an element). My conjecture is

that the number of subsets of size 4 for a set of size n is n(n� 1)(n� 2)(n� 3)=24.

statement: Denote the set of all sets as S. De�ne the predicate C(S; n) : \S has n subsets of size 4,"

for S 2 S and n 2 N. Then our statement becomes:

8n 2 N;8S 2 S; jSj = n) C(S; n(n� 1)(n� 2)(n� 3)=24)

header: De�ne P (n) : 8S 2 S; jSj = n ) C(S; n(n � 1)(n � 2)(n � 3)=24). I will prove by simple

induction that 8n 2 N; P (n).

base case P (0): The only set with 0 elements is the empty set, which has 0 subsets of size 0 =

0(0� 1)(0� 2)(0� 3)=24, so P (0) is veri�ed.

inductive step: Let n 2 N. Assume P (n). Let S 2 S, and assume jSj = n+ 1. I want to show that S

has (n+ 1)(n)(n� 1)(n� 2) subsets of size 4.

Since S has n+1 > 0 elements, we can distinguish one element and call it x. The size-4 subsets

of S that do not include x as an element are also size-4 subsets of S � fxg, a set of size n. By

the inductive hypothesis P (n), S � fxg has n(n � 1)(n � 2)(n � 3)=24 size-4 subsets. Each of

the size-4 subsets of S that do include x as an element are formed by a size-3 subset of S � fxg

unioned with set fxg. We know there are n(n� 1)(n� 2)=6 such subsets. Counting all of these
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yields:

n(n� 1)(n� 2)(n� 3)

24
+

n(n� 1)(n� 2)

6
=

n(n� 1)(n� 2)(n� 3)

24
+

4n(n� 1)(n� 2)

24

=
(4n+ n(n� 3))(n� 1)(n� 2)

24

=
(4 + n� 3)n(n� 1)(n� 2)

24

=
(n+ 1)n(n� 1)(n� 2)

24
�

6. [3 marks] number representation Read Theorem 4.1 carefully. It claims there is at least one binary represen-

tation for any natural number. The base case explicitly gives one representation for the natural number

0. Trace through the proof to see what binary representation it guarantees for the natural number 5.

What is the representation? Explain.

Solution

Theorem 4.1 guarantees that the sum

0� 23 + 1� 22 + 0� 21 + 1� 20

I will explain this step-by-step using the following the following short-hand: BR(n) is the binary

representation guaranteed by Theorem 4.1 for natural number n.

step 1: In the proof, since 5 is odd and greater than 0, we go to the inductive step and follow the odd

case, which tells us that BR(5) is built using BR(2) by:

BR(5) = 2� BR(2)+ 1� 20

This step also speci�es that BR(5) has one more term than BR(2).

step 2: To �nd BR(2) I go again to the inductive step and follow the even case, which says that BR(2)

is built using BR(1) by:

BR(2) = 2� BR(1)+ 0� 20

This step also speci�es that BR(2) has one more term than BR(1). Substituting this into BR(5)

yields:

BR(5) = 2� BR(2)+ 1� 20 = 4� BR(1)+ 0� 21 + 1� 20

step 3: To �nd BR(1) I go to the inductive step and follow the odd case, which says BR(1) is built

using BR(0) by:

BR(1) = 2� BR(0)+ 1� 20

This step also speci�es that BR(1) has one more term than BR(0). Substituting this into our

emerging representation of BR(5) yields:

BR(5) = 4� BR(1)+ 0� 21 + 1� 20 = 8� BR(0)+ 1� 22 + 0� 21 + 1� 20
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step 4: To �nd BR(0) I go to the base case and note that BR(0) = 0� 20. Substituting this into our

emerging representation BR(5) yields:

BR(5) = 8� BR(0)+ 1� 22 + 0� 21 + 1� 20 = 0� 23 + 1� 22 + 0� 21 + 1� 20

Notice this representation has 4 bits, with the left-most a 0! This is what a precise reading of the

proof of Theorem 4.1 yields: one of the in�nitely many binary representations of 5. Responding

to this, Theorem 4.2 assures us that there is a unique representation of any positive natural

number with 1 being the left-most digit.
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