CSC165H1: Problem Set 1 Sample Solutions

Due October 2 before 4 p.m.

Note: solutions are incomplete, and meant to be used as guidelines only. We encourage you to ask follow-up questions on the course forum or during office hours.

1. [6 marks] Truth tables and formulas. Consider the following formula:

$$
\neg r \Rightarrow(\neg p \Rightarrow q)
$$

(a) [2 marks] Write the truth table for the formula. (No need to show your calculations).

Solution

p	q	r	$\neg r \Rightarrow(\neg p \Rightarrow q)$
T	T	T	T
T	T	F	T
T	F	T	T
T	F	F	T
F	T	T	T
F	T	F	T
F	F	T	T
F	F	F	F

(b) [2 marks] Write a logically equivalent formula that doesn't use \Rightarrow or \Leftrightarrow, in other words it uses only \wedge, \vee, or \neg. Show how you derived the result.

Solution

$$
\begin{aligned}
\neg r \Rightarrow(\neg p \Rightarrow q) & \equiv r \vee(\neg p \Rightarrow q) \quad \text { \# material implication } \\
& \equiv r \vee(p \vee q) \quad \text { \# material implication again } \\
& \equiv r \vee p \vee q \quad \text { \# } \vee \text { is associative }
\end{aligned}
$$

(c) [2 marks] Write formula that is logically equivalent to the converse of the given formula, and that doesn't use \Rightarrow or \Leftrightarrow, in other words it uses only \wedge, \vee, or \neg. Show how you derived the result.

Solution

$$
\begin{aligned}
(\neg p \Rightarrow q) \Rightarrow \neg r & \equiv \neg(\neg p \Rightarrow q) \vee \neg r \quad \text { \# material implication } \\
& \equiv(\neg p \wedge \neg q) \vee \neg r \quad \text { \#De Morgan's }
\end{aligned}
$$

2. [6 marks] one-to-one and onto

Use the following definitions in the questions below.

Onto(f): $\forall n \in \mathbb{N}, \exists m \in \mathbb{N}, f(m)=n$, for $f: \mathbb{N} \rightarrow \mathbb{N}$.
OneToOne $(f): \forall m, n \in \mathbb{N}, m \neq n \Rightarrow f(m) \neq f(n)$, for $f: \mathbb{N} \rightarrow \mathbb{N}$.
(a) [1 mark] Suppose \neg Onto(g). Write this in predicate logic without using the predicate name Onto.

Solution

I simply negate the definition of Onto(g):

$$
\exists n \in \mathbb{N}, \forall m \in \mathbb{N}, g(m) \neq n
$$

(b) [1 mark] Suppose \neg OneToOne(h). Write this in predicate logic without using the predicate name OneToOne.

Solution

Again, I negate the definition of OneToOne(h):

$$
\exists m, n \in \mathbb{N}, m \neq n \wedge h(m)=h(n)
$$

(c) [1 mark] Give an example of a function $f: \mathbb{N} \rightarrow \mathbb{N}$ where Onto (f) and OneToOne (f).

Solution

This function always sends different inputs to different outputs (themselves!), and any element of the codomain is output from itself in the domain:

$$
f(n)=n
$$

(d) [1 mark] Give an example of a function $f: \mathbb{N} \rightarrow \mathbb{N}$ where \neg Onto (f) and OneToOne (f).

Solution

Every input produces output twice itself, so different inputs get sent to different outputs, but there are no inputs that produce any odd natural number as output:

$$
f(n)=2 n
$$

(e) [1 mark] Give an example of a function $f: \mathbb{N} \rightarrow \mathbb{N}$ where Onto (f) and $\neg \operatorname{OneToOne}(f)$.

Solution

Inputs 0 and 1 both produce output 0 , and for every output n there is corresponding input $2 n$:

$$
f(n)=\lfloor n / 2\rfloor
$$

(f) [1 mark] Give an example of a function $f: \mathbb{N} \rightarrow \mathbb{N}$ where $\neg \operatorname{Onto}(f)$ and \neg OneToOne (f).

Solution

Inputs 0 and 1 both produce output 5, and there is no input that produces output 6:

$$
f(n)=5
$$

3. [7 marks] modular arithmetic
(a) [2 marks] Prove Example 2.19(1) from the course notes.

Solution

translation: Example 2.19(1) states:

$$
\forall a, b, c, d, n \in \mathbb{Z}, n \neq 0 \Rightarrow(a \equiv c \bmod n \wedge b \equiv d \bmod n \Rightarrow a+b \equiv c+d \bmod n)
$$

discussion: Unpacking the definition of congruence modulo n tells us that $n \mid(a-c)$ and $n \mid b-d$.
It looks as though adding $(a-c)$ and $(b-d)$ gives us what we want.
header: Let $a, b, c, d \in \mathbb{Z}$. Let $n \in \mathbb{Z}^{+}$. Assume $a \equiv c \bmod n$ and $b \equiv d \bmod n$, in other words $n \mid(a-c)$ and $n \mid(b-d)$. WTS $n \mid((a+b)-(c+d))$.
body:

$$
n|(a-c) \wedge n|(b-d) \Rightarrow n \mid(1 \cdot(a-c)+1 \cdot(b-d))
$$

\# by divisibility of linear combinations, proved in lecture $n \mid((a+b)-(c+d))$
(b) [2 marks] Prove Example 2.19(3) from the course notes.

Solution

translation: Example 2.19(3) states:

$$
\forall a, b, c, d, n \in \mathbb{Z}, n \neq 0 \Rightarrow(a \equiv c \bmod n \wedge b \equiv d \bmod n \Rightarrow a b \equiv c d \bmod n)
$$

discussion: Unpacking the definition of congruence modulo n and using linear combination worked so well last time that I will try it again. Since I need to end up with an $a b$ term, I multiply $(a-c)$ by b, but then I need to multiply $(b-d)$ by something to undo the damage... Multiplying by c seems to work!
header: Let $a, b, c, d, n \in \mathbb{Z}$. Assume $n \neq 0$ and $a \equiv c \bmod n$ and $b \equiv d \bmod n$, in other words $n \mid(a-c)$ and $n \mid(b-d)$. WTS $n \mid(a b-c d)$.
body:

$$
n|(a-c) \wedge n|(b-d) \Rightarrow n \mid b \cdot(a-c)+c \cdot(b-d))
$$

\# by divisibility of linear combinations, proved in lecture $n \mid(a b-c d)$
(c) [3 marks] Use Example 2.19(3) to find the units digit of 257^{256}. Use Example 2.19(3) to prove your result - we will not accept the argument that you used a calculator or programming language to compute this with brute force.

Solution

translation:

$$
257^{256} \equiv 1 \bmod 10
$$

description: The translation says, in other words, $\exists k \in \mathbb{Z}, 257^{256}=10 k+1$, or the units digit of 257^{256} is 1 . I show by repeatedly multiplying pairs of numbers equivalent to each other modulo 10.
I will use a small lemma in the process: ${ }^{\text {f }}$
claim:

$$
\forall a, b, c, n \in, n \neq 0 \Rightarrow(a \equiv b \bmod n \wedge b \equiv c \bmod n \Rightarrow a \equiv c \bmod n)
$$

header: Let $a, b, c, n \in \mathbb{Z}$. Assume $n \neq 0 \wedge a \equiv b \bmod n \wedge b \equiv c \bmod n$. WTS $a \equiv c \bmod n$. body:

$$
\begin{aligned}
& n|(a-b) \wedge n|(b-c) \quad \text { \# definition of congruence } \\
& n \mid 1 \cdot(a-b)+1 \cdot(b-c) \quad \text { \# by divisibility of linear combinations } \\
& n \mid(a-c) \\
& a \equiv c \bmod n \quad \text { \# definition of congruence }
\end{aligned}
$$

main header: WTS $257^{256} \equiv 1 \bmod 10$.
main body:

$$
\begin{array}{rlc}
257 & \equiv 7 \bmod 10 & \text { \# since } 10 \mid 257-7 \\
257^{2} & \equiv 7^{2} \bmod 10 \quad \text { \# by } 2.19(3) \\
7^{2} & \equiv 9 \bmod 10 \quad \text { \# since } 10 \mid 49-9 \\
257^{2} & \equiv 9 \bmod 10 \quad \text { \# by lemma } \\
257^{4} & \equiv 9^{2} \bmod 10 \quad \text { \# by } 2.19(3) \\
9^{2} & \equiv 1 \bmod 10 \quad \text { \# since } 10 \mid 81-1 \\
257^{4} & \equiv 1 \bmod 10 \quad \text { \# by lemma } \\
257^{8} & \equiv 1^{2} \bmod 10 \quad \text { \# by } 2.19(3) \\
257^{16} & \equiv 1^{4} \bmod 10 \quad \text { \# by } 2.19(3) \\
257^{32} & \equiv 1^{8} \bmod 10 \quad \text { \# by } 2.19(3) \\
257^{64} & \equiv 1^{16} \bmod 10 \quad \text { \# by } 2.19(3) \\
257^{128} & \equiv 1^{32} \bmod 10 \quad \text { \# by } 2.19(3) \\
257^{256} & \equiv 1^{64} \bmod 10 \quad \text { \# by } 2.19(3) \\
257^{256} & \equiv 1 \bmod 10 \quad \text { \# 1 } 64=1
\end{array}
$$

*Fairly obvious, so we won't require this for full marks.
4. [7 marks] remainders
(a) [1 mark] Prove:

$$
\exists x \in[0,34], x \equiv 3 \bmod 5 \wedge x \equiv 5 \bmod 7
$$

Solution

discussion: I can just check the 35 integers $0, \ldots, 34$ and find one that works.
header: Let $x=33$. WTS $x \equiv 3 \bmod 5 \wedge x \equiv 5 \bmod 7$.
body:

$$
\begin{aligned}
& 5|(33-3) \wedge 7|(33-5) \\
& 33 \equiv 3 \bmod 5 \wedge 33 \equiv 5 \bmod 7 \# \text { definition of congruence } \\
& x \equiv 3 \bmod 5 \wedge x \equiv 5 \bmod 7
\end{aligned}
$$

(b) [1 mark] Prove:

$$
\exists m_{1}, m_{2} \in \mathbb{Z},\left(m_{1} \times 7\right)+\left(m_{2} \times 11\right)=1
$$

\ldots by finding suitable values for m_{1} and m_{2}.

Solution

discussion: I experiment with multiples of 7 and 11 to find a pair that are within 1 of each other:
21 and 22 will do!
header: Let $m_{1}=-3$ and let $m_{2}=2$. WTS $m_{1} 7+m_{2} 11=1$.
body:

$$
m_{1} 7+m_{2} 11=(-3) 7+(2) 11=-21+22=1
$$

(c) [2 marks] Assume that m_{1}, m_{2} are integers such that $\left(m_{1} \times 7\right)+\left(m_{2} \times 11\right)=1$. Prove:

$$
\forall a_{1}, a_{2} \in \mathbb{Z},\left(a_{2} \times m_{1} \times 7\right)+\left(a_{1} \times m_{2} \times 11\right) \equiv a_{2} \bmod 11
$$

Solution

translation:

$$
\forall m_{1}, m_{2} \in \mathbb{Z}, m_{1} 7+m_{2} 11=1 \Rightarrow \forall a_{1}, a_{2} \in \mathbb{Z}, a_{2} m_{1} 7+a_{1} m_{2} 11 \equiv a_{2} \bmod 11
$$

discussion: Since the first term has a factor $m_{1} 7$, I will try to add and then subtract $m_{2} 11$, based on the assumed linear combination, to see if I can isolate a_{2}.
header: Let $m_{1}, m_{2} \in \mathbb{Z}$. Assume $m_{1} 7+m_{2} 11=1$. Let $a_{1}, a_{2} \in \mathbb{Z}$. WTS $a_{2} m_{1} 7+a_{1} m_{2} 11 \equiv$ $a_{2} \bmod 11$.
body:

$$
\begin{aligned}
a_{2} m_{1} 7+a_{1} m_{2} 11= & a_{2}\left(m_{1} 7+m_{2} 11-m_{2} 11\right)+a_{1} m_{2} 11 \\
& \quad \text { \# by assumption } m_{1} 7+m_{2} 11=1 \\
= & a_{2}-a_{2} m_{2} 11+a_{1} m_{2} 11 \\
= & a_{2}+\left(a_{1}-a_{2}\right) m_{2} 11 \\
a_{2} m_{1} 7+a_{1} m_{2} 11-a_{2}= & \left(a_{1}-a_{2}\right) m_{2} 11 \\
& 11 \mid\left(a_{2} m_{1} 7+a_{1} m_{2} 11-a_{2}\right) \\
& \text { \# definition of divides } \\
a_{2} m_{1} 7+a_{1} m_{2} 11 \equiv & a_{2} \bmod 11 \quad \square
\end{aligned}
$$

(d) [3 marks] Prove that if p_{1}, p_{2} are any two distinct primes and a_{1}, a_{2} are any two integers, then there is some integer x such that $x \equiv a_{1} \bmod p_{1}$ and $x \equiv a_{2} \bmod p_{2}$. Hint: Note that $\operatorname{gcd}\left(p_{1}, p_{2}\right)=1$, read the material on gcd in the course notes, and read the previous part of this question.

Solution

translation:

$$
\forall p_{1}, p_{2}, a_{1}, a_{2} \in \mathbb{Z}, \operatorname{Prime}\left(p_{1}\right) \wedge \operatorname{Prime}\left(p_{2}\right) \wedge p_{1} \neq p_{2} \Rightarrow \exists x \in \mathbb{Z}, x \equiv a_{1} \bmod p_{1} \wedge x \equiv a_{2} \bmod p_{2}
$$

discussion: The structure is identical to the previous question if I substitute p_{1} for 7 and p_{2} for 11 .
I also know that, since $\operatorname{gcd}\left(p_{1}, p_{2}\right)=1$ there are integers m_{1} and m_{2} so that $m_{1} p_{1}+m_{2} p_{2}=1$. header: Let $p_{1}, p_{2}, a_{1}, a_{2} \in \mathbb{Z}$. Assume $\operatorname{Prime}\left(p_{1}\right) \wedge \operatorname{Prime}\left(p_{2}\right) \wedge p_{1} \neq p_{2}$. WTS:
$\exists x \in \mathbb{Z}, x \equiv a_{1} \bmod p_{1} \wedge x \equiv a_{2} \bmod p_{2}$
body:

$$
\begin{aligned}
& p_{1}>1 \wedge p_{2}>1 \quad \# \text { definition of } \operatorname{Prime}\left(p_{1}\right), \operatorname{Prime}\left(p_{2}\right) \\
& p_{1} \nmid p_{2} \wedge p_{2} \nmid p_{1} \quad \# p_{1} \neq 1 \neq p_{2} \wedge p_{1} \neq p_{2} \\
& \wedge \text { definition of } \operatorname{Prime}\left(p_{1}\right), \operatorname{Prime}\left(p_{2}\right) \\
& \operatorname{gcd}\left(p_{1}, p_{2}\right)=1 \quad \# \text { only possible divisor left } \\
& \exists m_{1}, m_{2} \in \mathbb{Z}, m_{1} p_{1}+m_{2} p_{2}=1 \quad \text { \# Course Notes, p. } 56 \\
& \text { Let } x=a_{2} m_{1} p_{1}+a_{1} m_{2} p_{2} \\
& x-a_{2}=a_{2}\left(m_{1} p_{1}+m_{2} p_{2}-m_{2} p_{2}\right)+a_{1} m_{2} p_{2}-a_{2} \\
& =a_{2}-a_{2} m_{2} p_{2}+a_{1} m_{2} p_{2}-a_{2} \quad \# m_{1} p_{1}+m_{2} p_{2}=1 \\
& x-a_{2}=\left(a_{1}-a_{2}\right) m_{2} p_{2} \\
& p_{2} \mid x-a_{2} \quad \# \text { there's a factor of } p_{2} \\
& x \equiv a_{2} \bmod p_{2} \quad \# \text { definition of congruence } \\
& x \equiv a_{1} \bmod p_{1} \quad \# \text { swap roles of } a_{1}, p_{1} \text { with } a_{2}, p_{2} \text { in algebra above }
\end{aligned}
$$

