L10a:
Distributed Agreement
Agreement Problems

• High-level goal: Processes in a distributed system reach *agreement* on a value
• Numerous problems can be cast this way
 • Transactional commit, atomic broadcast, ...

• The system model is critical to how to solve the agreement problem - or whether it can be solved at all
 • Failure assumptions
 • Timing assumptions
Review: Timing / Failure Models

- Timing assumptions:
 - Synchronous – shared clock, known bounds on message delivery
 - Asynchronous – no global clock, no time bounds on message delivery
 - Partial Synchrony – clocks synchronized within some bound, timeout to manage bounds on message delivery

- Failure assumptions:
 - Fail-stop – process is correct until it stops entirely
 - Byzantine – failed process behaves arbitrarily
A rose by any other name...

- Distributed Consensus has many names (depending on the assumptions and application)
 - Reliable multicast
 - Interactive consistency
 - Atomic broadcast
 - Byzantine Generals Problem

“This has resulted in a voluminous literature which, unfortunately, is not distinguished for its coherence. The differences in notation and the haphazard nature of the assumptions obfuscates the close relationship among these problems”
– Hadzilacos & Toueg, Distributed Systems.
High-level picture

- Goal: Build reliable systems in presence of faulty components
- Common approach:
 - Send request (or input) to some “f-tolerant” server
 - Have multiple (potentially faulty) components compute same function
 - Perform majority vote on outputs to get the “correct” result

\[
\text{majority}(v_1, v_2, v_3)
\]

f faulty, f+1 good components \(\Rightarrow\) 2f+1 total
Setup of Distributed Consensus

• N processes have to agree on a single value.
 • Example 1: Performing a commit in a replicated/distributed database.
 • Example 2: Collecting multiple sensor readings and deciding on an action

• Each process begins with a value
• Each process can irrevocably decide on a value
• Up to $f < N$ processes may be faulty
 • How do you reach consensus if there are no failures?
Properties of Distributed Consensus

• **Agreement**
 • If *any* correct process believes that V is the consensus value, then *all* correct processes believe V is the consensus value.

• **Validity**
 • If V is the consensus value, then some process proposed V.

• **Termination**
 • Each process decides some value V.

• Which of these are **Safety** properties and which are **Liveness** properties?
Consensus with Fail-Stop Faults

Assumptions:

• N processes connected by a complete graph
• Each process starts with an initial value \{0,1\}
• Synchronous timing model
• The number of Fail-Stop faults is bounded in advance to f. A process may fail in the middle of a message sending at some round. Once a process fails, it never recovers.
• No omission failures.
Problem Requirements:
• **Agreement**: all correct processes decide on the same value
• **Validity**: If a correct process decides on a value, there was a process that started with that value
• **Termination**: all correct processes decide on a value within a fixed number of rounds of message exchanges, \(r \)
Synch. Fail-stop Consensus Alg.

- Each process maintains a vector containing a value for each process
- In each round:
 - Send your vector to all processes
 - Update local vector according to received vectors
- After $f+1$ rounds, decide according to local vector
 - e.g., If you have majority 1 in the vector, then decide 1; otherwise decide 0.
- This is called the “Flood Set” algorithm
Flood Set Consensus Algorithm

- “Flood Set algorithm” run at each process i
 - Remember, we want to tolerate up to f failures

```plaintext
S_i \leftarrow \{\text{initial value}\}
for k = 1 to f+1
    send $S_i$ to all processes
    receive $S_j$ from all $j \neq i$
    $S_i \leftarrow S_i \cup S_j$ (for all $j$)
end for
Decide($S_i$)
```

- S_i is a set of values
- Decide(x) can be various deterministic functions
 - E.g. min(x), max(x), majority(x), or some default
- Assumes nodes are connected and links do not fail!
Analysis of Flood Set

- Requires $f+1$ rounds because process can fail at any time, in particular, during send
 - Must guarantee 1 round in which no failure occurs

- **Agreement**: Since at most f failures, then after $f+1$ rounds all correct processes will have identical sets S_i; evaluate $\text{Decide}(S_i)$ the same.

- **Validity**: $\text{Decide}()$ results in a proposed value (or default value)

- **Termination**: After $f+1$ rounds the algorithm completes
Example with $f = 1$, Decide() = min()

$S_1 = \{0\}$

$S_2 = \{1\}$

$S_3 = \{1\}$

End of round 1

$\{1,1\}$

End of round 2

$\{0,1,1\}$

decide 0

$\{0,1,1\}$

decide 0
Synchronous Byzantine Consensus

• Faulty processes can behave arbitrarily
 • May actively try to trick other processes
• Algorithm described by Lamport, Shostak, & Pease in terms of Byzantine generals agreeing whether to attack or retreat.
• The generals must have an algorithm to guarantee that:
 • A. All loyal generals decide on the same plan of action
 • Implies that all loyal generals must obtain the same information
 • B. A small number of traitors cannot cause the loyal generals to adopt a bad plan
• Decide() in this case is a majority vote, default action is “Retreat”
Byzantine Generals

• Use $v(i)$ to denote value sent by i^{th} general

• But a disloyal general (traitor) could send different values to different generals

→ Can’t use $v(i)$ obtained directly from i^{th} general

→ New conditions:

• Any two loyal generals use the same value $v(i)$, regardless of whether general i is loyal or not

• If the i^{th} general is loyal, then the value that she sends must be used by every loyal general as the value of $v(i)$.

• Traitors cannot deceive loyal generals about the value $v(i)$ sent by the i^{th} general if i is loyal.
Byzantine Generals Recast

• Re-phrase original problem as *reliable broadcast*:
 • General must send an order ("Use v as my value") to lieutenants
 • Each process takes a turn as a Commanding General, sending its value to the others as Lieutenants
 • After all values are reliably exchanged, Decide()
Synchronous Byzantine Model

Theorem: There is no algorithm to solve consensus if only oral messages are used, unless *more than two thirds* of the generals are loyal.

- In other words, impossible if $n \leq 3f$ for n processes, f of which are faulty.
- *Oral messages* are under control of the sender.
 - sender can alter a message that it received before forwarding it
 - unsigned messages in computer networks

- Let’s look at examples for special case of $n=3$, $f=1$
Case 1

- Traitor lieutenant tries to foil consensus by refusing to participate

“white hats” == loyal or “good guys”
“black hats” == traitor or “bad guys”

Round 1: Commanding General sends “Retreat”
Case 1

- Traitor lieutenant tries to foil consensus by refusing to participate

“white hats” == loyal or “good guys”
“black hats” == traitor or “bad guys”

Round 1: Commanding General sends “Retreat”

Round 2: L3 sends “Retreat” to L2, but L2 sends nothing

Decide: L3 decides “Retreat”

Loyal lieutenant obeys loyal commander. (good)

Decides to retreat
Case 2a

- Traitor lieutenant tries to foil consensus by lying about order sent by general

Round 1: Commanding General sends “Retreat”
Case 2a

- Traitor lieutenant tries to foil consensus by lying about order sent by general

Round 1: Commanding General sends “Retreat”

Round 2: L3 sends “Retreat” to L2; L2 sends “Attack” to L3

Decide: L3 decides “Retreat”

Loyal lieutenant obeys loyal commander. (good)

Lieutenant 3 decides to retreat
Case 2b

- Traitor lieutenant tries to foil consensus by lying about order sent by general

Round 1: Commanding General sends “Attack”
Case 2b

- Traitor lieutenant tries to foil consensus by lying about order sent by general

Round 1: Commanding General sends “Attack”

Round 2: L3 sends “Attack” to L2; L2 sends “Retreat” to L3

Decide: L3 decides “Retreat”

Loyal lieutenant disobeys loyal commander. (bad)

Lieutenant 3 decides to retreat
Case 3

- Traitor General tries to foil consensus by sending different orders to loyal lieutenants

Round 1: General sends “Attack” to L2 and “Retreat” to L3
Case 3

- Traitor General tries to foil consensus by sending different orders to loyal lieutenants

Round 1: General sends “Attack” to L2 and “Retreat” to L3

Loyal lieutenants obey commander. (good?)

Decide differently (bad)

Round 2: L3 sends “Retreat” to L2; L2 sends “Attack” to L3

Decide: L2 decides “Attack” and L3 decides “Retreat”

A decides to attack

Loyal lieutenants obey commander. (good?)

Decide differently (bad)

Lieutenant 3 decides to retreat

Lieutenant 2 decides to attack
Byzantine Consensus: $n > 3f$

- **Oral Messages algorithm, OM(f)**
- **Consists of $f+1$ “phases”**
- **Algorithm OM(0) is the “base case” (no faults)**
 1) Commander sends his value to every lieutenant
 2) Each lieutenant uses value received from commander, or default “retreat” if no value was received
- **Recursive algorithm handles up to f faults**
f+1 rounds:
1) OM(f): Commander sends his value to every lieutenant
2) For each lieutenant i, let v_i be the value i received from commander, or “retreat” if no value was received. Lieutenant i acts as commander in Alg. OM(f-1) to send v_i to each of the $n-2$ other lieutenants
3) For each i, and each $j \neq i$, let v_j be the value Lieutenant i received from Lieutenant j in step (2) (using Alg. OM(f-1)), or else “retreat” if no such value was received. Lieutenant i uses the value $\text{majority}(v_1, \ldots, v_{n-1})$.
4) Continue until OM(0).
Example: $f = 1, n = 4$

- Loyal commander, 1 traitor lieutenant

Step 1: Commander sends same value, v, to all
Example: $f = 1$, $n = 4$

- Loyal commander, 1 traitor lieutenant

Step 1: Commander sends same value, v, to all

Step 2: Each of L2, L3, L4 executes OM(0) as commander, but L2 sends arbitrary values

Step 3: Decide
- L3 has $\{v,v,x\}$,
- L4 has $\{v,v,y\}$,
Both choose v.

![Diagram showing the network of commanders and lieutenants with arrows indicating communication and decision making process.](image)
Example: $f = 1, \ n = 4$

- Traitor commander, all lieutenants loyal

Step 1: Commander sends different value, x, y, z, to each L
Example: $f = 1, n = 4$

- Traitor commander, all lieutenants loyal

Step 1: Commander sends different value, x, y, z, to each L

Step 2: Each of L_2, L_3, L_4 executes $OM(0)$ as commander, sending value they received

Step 3: Decide
L_2 has $\{x,y,z\}$
L_3 has $\{x,y,z\}$,
L_4 has $\{x,y,z\}$,

All loyal lieutenants get same result.
Example: OM(2), f=2, n=7

- OM(2): General sends value v to all six lieutenants
- Now run OM(1) six times
 - L_i takes turn as general to send value received from original
general to others
 - At end of each OM(1), all lieutenants agree on the value to use
for L_i
- Finally, OM(0): All receivers run OM(0) to exchange
values
 - To verify that lieutenants tell each other the same thing
 - Msg from L_i of form: “L_0 said v0, L_1 said v1, etc..”
- All lieutenants are now using the same set of values to
reach overall decision. Let’s see how..
Example: OM(2), f=2, n=7

- Traitors: L5, L6

- Now run OM(1) six times

- Loyal lieutenants Decide(majority(A, A, A, A, R, R)) => all loyal lieutenants attack!
Example: OM(2), f=2, n=7

- Traitors: C, L6

- Now run OM(1) six times

- Decision?
Decision with Bad Commander

- L1: majority(A,R,A,R,A,A) \(\rightarrow\) Attack
- L2: majority(A,R,A,R,A,R) \(\rightarrow\) Retreat
- L4: majority(A,R,A,R,A,R) \(\rightarrow\) Retreat
- L5: majority(A,R,A,R,A,A) \(\rightarrow\) Attack

Problem: All loyal lieutenants do NOT choose same action
Next Step of Algorithm

• Verify that lieutenants tell each other the same thing
 • Requires rounds = f + 1
 • OM(0): Msg from Li of form: “L0 said v0, L1 said v1, etc...”

• What messages does L1 receive in this example?
 • OM(2): A
 • OM(1): 2/R, 3/A, 4/R, 5/A, 6/A (doesn’t know 6 is traitor)
 • OM(0): L1 sees:
 2{3/A, 4/R, 5/A, 6/R}
 3{2/R, 4/R, 5/A, 6/A}
 4{2/R, 3/A, 5/A, 6/R}
 5{2/R, 3/A, 4/R, 6/A}
 6{2/?, 3/?, 4/?, 5/?} (6 sends arbitrary values)

• All loyals see same messages in OM(0) from L1, L2, L3, L4, and L5

• majority(1/A, 2/R, 3/A, 4/R, 5/A, -) \(\Rightarrow\) All attack

Try this with f=2, n=6! What happens in the end?

What if 6 “played nice” and sent everyone the same value?
Reducing Overhead

- Note that a lot of messages required to handle even 1 faulty process
 - Need minimum 4 processes to handle 1 fault, 7 to handle 2 faults, etc.
 - But as system gets larger, probability of a fault also increases
- Problem: Traitors can lie about what others said.
 - Restrict this ability!
- If we use signed messages, instead of oral messages, can handle f faults with $2f+1$ processes
 - Loyal general’s signature cannot be forged limits traitors
 - Simple majority requirement
Signed messages: Case 1

- Let \(x:i \) denote the value \(x \) signed by general \(i \)
- \(v:j:i \) is value \(v \) signed by \(j \), and then \(v:j \) signed by \(i \)

Round 1: Commanding General sends signed “Attack” message

Round 2:
- L3: sends signed A:1:3 to L2;
- L2 sends A:1:2 to L3

Decide: L3 decides correctly

- Loyal lieutenant knows what order to obey. (good!)
- Note that the traitor lieutenant cannot do much!

Commanding General 1

Lieutenant 2

Lieutenant 3

decides to Attack
Signed messages: Case 2

- Let $x:i$ denote the value x signed by general i
- $v:j:i$ is value v signed by j, and then $v:j$ signed by i

Round 1: Traitor General sends signed “A” to L2, and “R” to L3

Round 2: L2: sends signed A:1:3 to L3; L3 sends R:1:2 to L2

Decide: Both L2 and L3 have same set of orders: \{A, R\}

Commanding General 1

Both loyal lieutenants decide the same thing (good!)

Also, both lieutenants know the commander is a traitor. Why?
Conclusions

• Problem: To implement a fault-tolerant service with coordinated replicas, must **agree on inputs**
• Byzantine failures make agreement challenging
 • Produce arbitrary output, can’t detect, collude
• Use different agreement protocol depending on assumptions
 • Oral messages: Need 3f+1 nodes to tolerate f failures
 • Difficult because traitors can lie about what others said
 • Signed messages: Need 2f+1 nodes
 • Easier because traitors can only lie about other traitors
Asynchronous Distributed Consensus

• Fail-Stop or Byzantine failures \rightarrow IMPOSSIBLE!
• Fischer, Lynch and Patterson (FLP) impossibility result
 • Asynchronous assumption makes it impossible to differentiate between failed and slow processes.
 • Therefore termination (liveness) cannot be guaranteed.
 • Even if an algorithm terminates, it may violate agreement (safety).
 • A slow process may decide differently than other processes thus violating the agreement property
More Byzantine Fault Tolerance

• Castro and Liskov: Practical Byzantine Fault Tolerance
 • Uses various optimizations to combine messages, reduce total communication
 • Partially synchronous assumption \rightarrow guarantee liveness.
 • Therefore attacks on system can only slow it down – safety is guaranteed.
 • Assumes that an attack on liveness can be dealt with in a reasonable amount of time.
 • Suitable for wide area deployment (e.g., internet)
 • Used in Microsoft Research’s Farsite distrib. file system
• Zyzzyva: Speculative Byzantine Fault Tolerance
• The Next 700 BFT Protocols, Guerraoui et al., Eurosys 2010
• A form of BFT is used in Bitcoin