
B-tree examples

Inserting a Data Entry into a B+ Tree

• Find correct leaf L.

• Put data entry onto L.
• If L has enough space, done!

• Else, must split L (into L and a new node L2)
• Redistribute entries evenly, copy up middle key.

• Insert index entry pointing to L2 into parent of L.

• This can happen recursively
• To split index node, redistribute entries evenly, but push up

middle key. (Contrast with leaf splits.)

• Splits “grow” tree; root split increases height.
• Tree growth: gets wider or one level taller at top.

Inserting 8* into Example B+ Tree

• Observe how
minimum
occupancy is
guaranteed in
both leaf and
index pg splits.

• Note difference
between copy-up
and push-up; be
sure you
understand the
reasons for this.

2* 3* 5* 7* 8*

5

Entry to be inserted in parent node.

(Note that 5 is
continues to appear in the leaf.)

s copied up and

appears once in the index. Contrast

5 24 30

17

13

Entry to be inserted in parent node.
(Note that 17 is pushed up and only

this with a leaf split.)

Example B+ Tree After Inserting
8*

 Notice that root was split, leading to increase in height.

 In this example, we can avoid split by re-distributing entries;
however, this is usually not done in practice.

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Deleting a Data Entry from a B+ Tree

• Start at root, find leaf L where entry belongs.

• Remove the entry.
• If L is at least half-full, done!
• If L has only d-1 entries,

• Try to re-distribute, borrowing from sibling (adjacent node
with same parent as L).

• If re-distribution fails, merge L and sibling.

• If merge occurred, must delete entry (pointing to L or
sibling) from parent of L.

• Merge could propagate to root, decreasing height.

Example Tree After (Inserting 8*,
Then) Deleting 19* and 20* ...

• Deleting 19* is easy.

• Deleting 20* is done with re-distribution. Notice
how middle key is copied up.

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

... And Then Deleting 24*

• Must merge.

• Observe `toss’ of index
entry (on right), and `pull
down’ of index entry
(below).

30

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root

30135 17

Example of Non-leaf Re-
distribution
• Tree is shown below during deletion of 24*. (What

could be a possible initial tree?)

• In contrast to previous example, can re-distribute entry
from left child of root to right child.

Root

135 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39*22* 27* 29*21*7*5* 8*3*2*

After Re-distribution

• Intuitively, entries are re-distributed by `pushing
through’ the splitting entry in the parent node.

• It suffices to re-distribute index entry with key 20;
we’ve re-distributed 17 as well for illustration.

14* 16* 33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*7*5* 8*2* 3*

Root

135

17

3020 22

Another B+Tree Insertion Example

INITIAL TREE

Next slides show the insertion of (125) into this tree

Another Example: INSERT (125)

Step 1: Split L to create L’

Insert the lowest value in L’ (130) upward into the parent P

Another Example: INSERT (125)

Step 2: Insert (130) into P by creating a temp node T

Another Example: INSERT (125)

Step 3: Create P’; distribute from T into P and P’

New P has only 1 key, but two pointers so it is OKAY.
This follows the last 4 lines of Figure 12.13 (note that “n” = 4)
K’’ = 130. Insert upward into the root

Another Example: INSERT (125)

Step 4: Insert (130) into the parent (R); create R’

Once again following the insert_in_parent() procedure, K’’ = 1000

Another Example: INSERT (125)

Step 5: Create a new root

From the book

• Exercises 10.1, 10.5, 10.11

