B-tree examples

Inserting a Data Entry into a B+ Tree

* Find correct leaf L.

e Put data entry onto L.

- If L has enough space, done!

- Else, must L (into L and a new node L2)
e Redistribute entries evenly, middle key.
* Insert index entry pointing to L2 into parent of L.

* This can happen recursively

, redistribute entries evenly, but
middle key. (Contrast with leaf splits.)

* Splits “grow” tree; root split increases height.
- Tree growth: gets or

Inserting 8* into Example B+ Tree

* Observe how -
minimum -
occupancy is \

K\

guaranteed in 15 e
both leaf and
index pg splits.

* Note difference
between
and be -

sure you -
understand the \
reasons for this.

Example B+ Tree After Inserting
8*

ROO\

17

]

| \

5 || 13 24 || 30
" \ %
2% | 3* 5% | 7| 8* 14| 16* 191 207 22 24| 27% 29* 33+ 34 38%| 39*
“ Notice that root was split, leading to increase in height.
“* In this example, we can avoid split by re-distributing entries;

however, this is usually not done in practice.

Deleting a Data Entry from a B+ Tree

e Start at root, find leaf L where entry belongs.

 Remove the entry.
 If Lis at least half-full, done!
- If L has only d-1 entries,

* Try to , borrowing from sibling (adjacent node
with same parent as L).
* |f re-distribution fails, L and sibling.

* If merge occurred, must delete entry (pointing to L or
sibling) from parent of L.

* Merge could propagate to root, decreasing height.

Example Tree After (Inserting 8%,
Then) Deleting 19* and 20* ...

Roo\

j 27 30

5

13
/’ \\
* 7*

8*

x| 3% ﬁ\; 14*| 16*

* Deleting 19* is easy.

e Deleting 20* is done with re-distribution. Notice
how middle key is

227 247 27*| 29* 33* 34* 38*| 39*

... And Then Deleting 24*

* Must merge.

\

30
* Observe of index /
entry (on right), and — o
of index entry 22" | 21 | 29~ 33+ | 34 | 38" | 39"
(below).
RON
5 13 17 30
ox | 3% 5% | 7* | 8* 14* | 16+ 22| 27%| 29* 33+ | 34 | 38* | 39*

Example of Non-leaf Re-
distribution

* Tree is shown below during deletion of 24*. (What
could be a possible initial tree?)

* In contrast to previous example, can re-distribute entry
from left child of root to right child.

ROOt\4
22

5 13 || 17 20 30
277

L A \
*

m\&
4 3343443

S5*| 7*| 8* 144 16* 174 184 20% 21%4 227 29

8% 397

After Re-distribution

* Intuitively, entries are
the splitting entry in the parent node.

* |t suffices to re-distribute index entry with key 20;
we’ve re-distributed 17 as well for illustration.

Roé?\\\\\

17

5 13 201 22 30

2% 3* 5*| 7*| 8* 14*16% 174184 20* 21% 22% 271 297

Another B+Tree Insertion Example

INITIAL TREE

1000 0 0

100 200 300

L

10 || 20 30 100 (| 130 | | 1580 200 (] 230 | | 240 300 || 330 [| 350

Next slides show the insertion of (125) into this tree

Another Example: INSERT (125)

Step 1: Split L to create L

1000 0 0

100 200 300

10 || 20 30 200 (| 230 | | 240 300 (]| 330 | | 350

100 || 125 130 | [130

Insert the lowest value in L’ (130) upward into the parent P

Another Example: INSERT (125)

Step 2: Insert (130) into P by creating a temp node T

1000 0
Temp Node T
100 130 200 300
10 || 20 30 200 || 230 | | 240 300 || 330 || 350
L L

100 | 125

130

150

Another Example: INSERT (125)

Step 3: Create P’; distribute from T into P and P’

1000 0 0

10 || 20 30

100 || 125

New P has only 1 key, but two pointers so it is OKAY.
This follows the last 4 lines of Figure 12.13 (note that “n” = 4)
" =130. Insert upward into the root

Another Example: INSERT (125)

Step 4: Insert (130) into the parent (R); create R’

130 Hﬂﬂ‘@ﬂ‘; H

10 || 20 30

L
100 || 125

Once again following the insert _in_parent() procedure, K’ = 1000

Another Example: INSERT (125)

Step 5: Create a new root

1000

130 0

From the book

* Exercises 10.1, 10.5, 10.11

