#### Learning with Maximum Likelihood



René Magritte, "La reproduction interdite" (1937)

CSC411/2515: Machine Learning and Data Mining, Winter 2018

Michael Guerzhoy and Lisa Zhang

## Likelihood: Bernoulli Variables

- Suppose a fair coin is tossed n times, independently
  - $Y \sim Bernoulli(\theta)$
- The likelihood (discrete case) is the probability of observing the dataset when the parameters are  $\theta$ )
  - $P(Y_i = 1|\theta) = \theta$
  - $P(Y_i = 1|\theta) = \theta$
  - $P(Y_i = y_i | \theta) = \theta^{y_i} (1 \theta)^{1 y_i}$
  - $P(Y_1 = y_1, Y_2 = y_2, ..., Y_m = y_m | \theta) = \prod_{i=1}^m P(Y_i = y_i | \theta)$

# Maximum likelihood: Bernoulli

- Suppose we observe the data  $Y_1 = y_1, Y_2 = y_2, \dots, Y_m = y_m$  (m i.i.d. Bernoulli variables), and would like to know what  $\theta$  is
- ullet One possibility: find the ullet that maximizes the likelihood function
  - What value of  $\theta$  makes the data set that we are actually observing (i.e., the training set) the most plausible?
- $P(Y_1 = y_1, Y_2 = y_2, ..., Y_m = y_m | \theta)$  is maximized at  $\theta = \frac{1}{m} \sum_{i=1}^m y_i$

## Likelihood: Gaussian Noise

- Assume each data point is generated using some process.
  - E.g.,  $y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}, \ \epsilon^{(i)} \sim N(0, \sigma^2)$
- We can now compute the likelihood of single datapoint
  - I.e., the probability of the point for a set  $\theta$ .
  - E.g.,  $P\left(y^{(i)}\middle|\theta,x^{(i)}\right) = \frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{\left(y^{(i)}-\theta^Tx^{(i)}\right)^2}{2\sigma^2}\right)$  We can then compute the likelihood for the entire training set  $\{\left(x^{(1)},y^{(1)}\right),\left(x^{(2)},y^{(2)}\right),...,\left(x^{(m)},y^{(m)}\right)\}$  (assuming each point is independent)
  - E.g.,  $P(y|\theta,x) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y^{(i)} \theta^T x^{(i)})^2}{2\sigma^2}\right)$

# Maximum Likelihood

- $P(\text{data}|\theta) = P(y|\theta, x) =$   $\Pi_1^m \frac{1}{\sqrt{2\pi\sigma^2}} exp(-\frac{(y^{(i)} \theta^T x^{(i)})^2}{2\sigma^2})$
- $\log P(data|\theta) = \sum -\frac{(y^{(i)} \theta^T x^{(i)})^2}{2\sigma^2} + 2m/\log(2\pi\sigma^2)$

is maximized for a value of  $\theta$  for which  $\sum_{i=1}^{m} (y^{(i)} - \theta^T x^{(i)})^2$  is minimized

Note: x is fixed