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Likelihood: Bernoulli Variables

e Suppose a fair coin is tossed n times, independently
* Y~Bernoulli(0)

* The likelihood (discrete case) is the probability of
observing the dataset when the parameters are 0)
- P(Y; =1|0) = 6
« P(Y;=1/6) =6
* P(Y; = y;10) = 67i(1 — 6)' 7

* PV, =y, Y5 =y, o, Yo = ym|0) = 1121 P(Y; = ¥:16)



Maximum likelihood: Bernoulli

* Suppose we observe thedataY; =y, Y, =
VYo, e, Yy = Vi, (mi.i.d. Bernoulli variables), and
would like to know what 8 is

* One possibility: find the 6 that maximizes the
likelihood function

* What value of 8 makes the data set that we are actually
observing (i.e., the training set) the most plausible?

. P(Y1 =vy.,Y, =v,,.., Y, = y,,|0) is maximized at 6 =
i=1Yi



Likelihood: Gaussian Noise

* Assume each data point is generated using some process.
e E.g,y®D =0Tx® + O, cMDN(0,02)

* We can now compute the likelihood of single datapoint
* |.e., the probability of the point for a set 6.
. (i) 0 (i) — 1 ( (y(i)—QTx(i))Z)
E.g.,P(y | , X ) = 5= €Xp\~ = We
can then compute the likelihood for the entire training
(assuming each point is independent)

| N A
E.g., P(y[60,x) =1T1;2, V2102 exp( 252




Maximum Likelihood

. P(dataIH) = P(y|6,x) =
y (D ng(l))

——exp(— (

1 V2mo? 202
(D_gT D)
+ logP(datalg) = 3, - ¥ Zizx ) 4 2my
log(2ma4)

is maximized for a value of @ for which
. N 2
?;1(3’(1) — QTx(l)) is minimized
* Note: x is fixed



