Linear Regression with Multiple Predictor Variables

Slides from:

CSC411/2515: Machine Learning and Data Mining, Winter 2018

Andrew Ng

Michael Guerzhoy and Lisa Zhang

Multiple variables (features) predict y

	Size (feet ²) x_1	Number of bedrooms x_2	Number of floors x_3	Age of home (years) x_4	Price (\$1000) <i>y</i>
	2104	5	1	45	460
$x_0 =$	1 1416	3	2	40	232
	1534	3	2	30	315
	852	2	1	36	178

Notation:

n = number of variables features

 $x^{(i)}$ = input (features) of i^{th} training example.

 $x_i^{(i)}$ = value of feature j in i^{th} training example.

$$x_0\theta_0=\theta_0$$

$$h_{\theta}(\mathbf{x}) = h_{\theta}(x_0, x_1, x_2, ..., x_n) = x_0\theta_0 + x_1\theta_1 + ... + x_n\theta_n = \boldsymbol{\theta}^T \mathbf{x}$$

Minimize:
$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Minimizing this cost function corresponds to minimizing the distance between The observations and the hyperplane defined by $m{ heta}^T X - Y$ =0

Reminder about the intuition for this in 2D on the board

Computed Features

It is sometimes useful to compute more features

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

= $\theta_0 + \theta_1 (size) + \theta_2 (size)^2 + \theta_3 (size)^3$

$$x_1 = (size)$$
$$x_2 = (size)^2$$

$$x_3 = (size)^3$$

Much better fit than we would have gotten with linear regression

Computed Features Examples – cont'd

Basic Idea:

 $b_{\theta}(depth, frontage) = \theta_0 + \theta_1 depth + \theta_1 frontage$ depth

Better (if the price depends on the area):

$$h_{\theta}(depth, frontage) = \theta_0 + \theta_1 depth + \theta_2 frontage + \theta_3 (frontage \times depth)$$

Note: we could not represent the idea that the price is proportional to the area using The basic $b_{ heta}$

Set:

 $x_0: 1$

 x_1 : depth

 x_2 : frontage

 x_3 : $depth \times frontage$

 x_4 : $depth^2$

...

(But there is a limit to how much we can do this without *overfitting*: more on that later), and find the best θ such that

$$h_{\theta}(\mathbf{x}) = \theta^T \mathbf{x}$$