Heuristic Search (Part 2)

- Reading note: Chapter 4 covers heuristic search.

Search animations: Pac Man
https://www.youtube.com/watch?v=2XjzjAfGWzY

BSBMON

PRESS SPACE TO START
+/- to change theme
in game
PGUP/PGDN TO CHANGE ALGORITHM
LFTCLK/RGTCLK TO PLACE START/GOAL

CSC384, University of Toronto

Problem!

Back to A^{*} : is it Optimal?

Properties of A^{*} depend on conditions on $\mathrm{h}(\mathrm{n})$

- To achieve completeness, optimality, and desirably time and space complexity with A* search, we must put some conditions on the heuristic function $h(n)$ and the search space.

Admissible heuristics

Which heuristics are admissible for the 8 puzzle?

- $h(n)=$ number of misplaced tiles
- $h(n)=$ total Manhattan distance between tile locations in S and goal locations in G
- $h(n)=\min \left(2, h^{\star}[n]\right)$
- $h(n)=h^{*}(n)$
- $h(n)=\max \left(2, h^{*}[n]\right)$
- $h(n)=0$

[^0]
Condition on h(n): Admissible

- Assume each transition due to an action a has cost $\geq \varepsilon>0$.
- Let $h^{*}(n)$ be the cost of an optimal path from n to a goal node (∞ if there is no path). Then an admissible heuristic satisfies the condition:

$$
h(n) \leq h^{*}(n)
$$

an admissible heuristic never over-estimates the cost to reach the goal, i.e., it is optimistic

- Hence $h(g)=0$, for any goal node g
- Also $h^{*}(n)=\infty$ if there is no path from n to a goal node

Admissible heuristics

Say for the 8-puzzle:
$h_{1}(n)=$ number of misplaced tiles
$h_{2}(n)=$ total Manhattan distance
(i.e., no. of squares from desired location of each tile)

- $h_{1}(S)=? 8$

Start State

Goal State

- $\mathrm{h}_{2}(\mathrm{~S})=? 3+1+2+2+2+3+3+2=18$

How to build a heuristic?

A useful technique is to simplify a problem when building heuristics, and to let $h(n)$ be the cost of reaching the goal in the easier problem.
For example, in the 8 -Puzzle you can only move a tile from square A to B if A is adjacent (left, right, above, below) to B and B is blank
We can relax some of these conditions and:

1. allow a move from A to B if A is adjacent to B (i.e. we can ignore whether or not position is blank),
2. allow a move from A to B if B is blank (i.e. we can ignore adjacency),
3. allow all moves from A to B (ignore both conditions).

	24		$1{ }^{2}$
5	\checkmark	3	+

Admissible heuristics make for optimal search

Why?

- Say we have an optimal path to $\mathrm{n}_{\text {goal }}$ with cost $\mathrm{g}\left(\mathrm{n}_{\text {goal }}\right)$.
- Let $\mathrm{n}_{\text {'goal }}$ be a sub-optimal path, meaning $\mathrm{g}\left(\mathrm{n}_{\text {goal }}\right)>\mathrm{g}\left(\mathrm{n}_{\text {goal }}\right)$.
- Let n " be any sub-path of the optimal path on the Frontier.

Is it possible for the path to $n_{\text {'goal }}$ to be explored before the path to $n_{\text {goal }}$?

- No! Because $\mathrm{f}\left(\mathrm{n}_{\text {goal }}\right)$ < $\mathrm{f}\left(\mathrm{n}_{\text {goal }}\right)$
- Also $f\left(n^{\prime \prime}\right)<=f\left(n_{\text {goal }}\right)$, because our heuristic is admissible.
- So, $\mathrm{f}\left(\mathrm{n}^{\prime \prime}\right)<\mathrm{f}\left(\mathrm{n}_{\text {goal }}^{\prime}\right)$

Meaning sub-paths on the optimal path to $n_{\text {goal }}$ will be explored before any sub-optimal path to the goal!

How to build a heuristic?

- \#3 leads to the misplaced tiles heuristic
- To solve the puzzle, we need to move each tile into its final position.
- Number of moves $=$ number of misplaced tiles
- Clearly h(n) = number of misplaced tiles \leq the $h^{*}(n)$ the cost of an optimal sequence of moves from n.
- \#1 leads to the Manhattan distance heuristic.
- To solve the puzzle we need to slide each tile into its final position.
- We can move vertically or horizontally.
- Number of moves = sum over all of the tiles of the number of vertical and horizontal slides we need to move that tile into place
- Again h(n) = sum of the Manhattan distances $\leq h^{*}(n)$
- in a real solution we need to move each tile at least that that far and we can only move one tile at a time.

Admissible heuristics make for optimal search

- A* expands nodes, or paths, in order of increasing f value
- Gradually adds f contours
- Each contour contains all paths with $f=f_{i}$, where $f_{i}<f_{i+1}$

Stronger condition on $h(n)$:
 Monotonic (or consistent)

- Stronger condition than admissibility

Consistency implies Admissibility

Assume consistency: $\mathrm{h}(\mathrm{n} 1) \leq \mathrm{c}(\mathrm{n} 1, \mathrm{a}, \mathrm{n} 2)+\mathrm{h}(\mathrm{n} 2)$
Prove admissible: $h(n) \leq h^{*}(n)$

If no path exists from n to a goal, $h^{*}(n)=\infty$ and $h(n) \leq h *(n)$ Let the path to from n to $n_{\text {goal }}$ be an OPTIMAL path from n to a goal. Call the cost of this path $h^{*}(n)$, and call the cost of each sub-path from ni to $\mathrm{n}_{\text {goal }} \mathrm{h}^{*}(\mathrm{ni})$.
We will prove $h(n) \leq h^{*}(n)$ by induction on the length of this optimal path.

Proof by Induction

Assume consistency: $h(n 1) \leq c(n 1, a, n 2)+h(n 2)$
Prove admissible: $h(n) \leq h^{*}(n)$

Base Case:

$h\left(\mathrm{n}_{\text {gaal }}\right)=0 \leq \mathrm{h}^{*}\left(\mathrm{n}_{\text {goal }}\right)=0$
$h\left(n_{1}\right) \leq c\left(n_{1}, a_{1}, n_{\text {goal }}\right)+h\left(n_{\text {goal }}\right) \leq c\left(n_{1}, a_{1}, n_{\text {goal }}\right)+h^{*}\left(n_{\text {goal }}\right)=h^{*}\left(n_{1}\right)$

Induction:

Assume $h\left(n_{i}\right) \leq h^{*}\left(n_{i}\right)$
$h\left(n_{-1}\right) \leq c\left(n_{-1-1}, a_{i-1}, n_{i}\right)+h\left(n_{i}\right) \leq c\left(n_{-1-1}, a_{i-1}, n_{i}\right)+h^{*}\left(n_{i}\right)=h^{*}\left(n_{i-1}\right)$

Some consequences of Monotonicity

1. f-values of states in a path are non-decreasing. i.e. if $n 1$ and $n 2$ are nodes along a path, then $f(n 1) \leq f(n 2)$

Proof: $f(n 1)=g(n 1)+h(n 1)=\operatorname{cost}($ path to $n 1)+h(n 1)$

$$
\leq g(n 1)+c(n 1, a, n 2)+h(n 2)
$$

But $g(n 1)+c(n 1, a, n 2)+h(n 2)=g(n 2)+h(n 2)=f(n 2)$

Some consequences of Monotonicity

1. f-values of states in a path are non-decreasing. i.e. if $n 1$ and $n 2$ are nodes along a path, then $f(n 1) \leq f(n 2)$

Proof: $f(n 1)=g(n 1)+h(n 1)=\operatorname{cost}($ path to $n 1)+h(n 1)$ $\leq g(n 1)+c(n 1, a, n 2)+h(n 2)$

But $g(n 1)+c(n 1, a, n 2)+h(n 2)=g(n 2)+h(n 2)=f(n 2)$

$$
\text { So } f(n 1) \leq f(n 2)
$$

Some consequences of Monotonicity

3. If node n has been expanded, every path with a lower f-value than n has already been expanded.

- Say we just expanded node ni on a path to node nk, and that $\mathrm{f}(\mathrm{nk})<\mathrm{f}(\mathrm{n})$.
- This means $n i+1$ is on the frontier and $f(n i+1) \leq f(n k)$, because they are both on the same path.
- BUT if ni+1 were on the frontier at the same time as node n, it would have been expanded before n because $f(n i+1) \leq$ $\mathrm{f}(\mathrm{nk})<\mathrm{f}(\mathrm{n})$.
- Thus, n can't have been expanded before every path with a lower f-value has been expanded.

Some consequences of Monotonicity

2. If $n 2$ is expanded after $n 1$, then $f(n 1) \leq f(n 2)$.
i.e. f -values of nodes that are expanded cannot decrease during the search

Why? When n1 was selected for expansion, n2 was either:

1. Already on the frontier, meaning $f(n 1) \leq f(n 2)$. Otherwise we would have expanded $n 2$ before $n 1$.
2. Added to the frontier as a result of $n 1$'s expansion, meaning $n 2$ and $n 1$ lie along the same path. If this is the case, as we demonstrated on the prior slide, $f(n 1) \leq f(n 2)$.

Some consequences of Monotonicity

4. The first time A^{*} expands a node, it has found the minimum cost path to that node.
$\mathrm{f}($ of the first discovered path to n$)=\operatorname{cost}($ of the first discovered path to $n)+h(n)$
Likewise,
$\mathrm{f}($ of any other path to n$)=\operatorname{cost}($ of any other path to n$)+\mathrm{h}(\mathrm{n})$.
From the prior slide we know:
f (of the first discovered path to n) $\leq \mathrm{f}$ (of any other path to n)
This means, by substitution
$\operatorname{cost}($ of 1 st discovered path to n) $\leq \operatorname{cost}($ of any other path to n)

Hence, the first discovered path is the optimal one!

Monotonic, Admissible A*

Complete?

YES. Consider a least cost path to a goal node
-SolutionPath $=\langle$ Start $\rightarrow \mathrm{n} 1 \rightarrow \ldots \rightarrow \mathrm{G}>$ with cost $\mathrm{c}($ SolutionPath $)$
-Since each action has a cost $\geq \varepsilon>0$, there are only a finite number of paths that have f-value $<c$ (SolutionPath). None of these paths lead to a goal node since SolutionPath is a least cost path to the goal.
-So eventually SolutionPath, or some equal cost path to a goal must be expanded.

Time and Space complexity?

-When $h(n)=0$ for all n, h is monotone (A^{*} becomes uniform-cost search)! -When $h(n)>0$ for some n and still admissible, the number of nodes expanded will be no larger than uniform-cost.
-Hence the same bounds as uniform-cost apply. (These are worst case bounds). Still exponential complexity unless we have a very good h !
-In real world problems, we sometimes run out of time and memory. We will introduce IDA* to address some memory issues, but IDA* isn't very good when many cycles are present.

Effect of Heuristic Functions

- What portion of the state space will be explored by UCS? A*? Greedy search? Weighted A^{*} ?

Monotonic, Admissible A*

Optimal?

YES. As we saw, the first path to a goal node must be optimal.

Cycle Checking?

We can use a simple implementation of cycle checking (multiple path checking) - just reject all search nodes that visit a state already visited by a previously expanded node. We need keep only the first path to a state, rejecting all subsequent paths.

Limitations of A* Search

- Observation: While A* may expand less of the state space, it is still constrained by speed or memory (many states are explored, on Frontier).
- Tools to address these problems:
- IDA* (Iterative Deepening A*) - similar to

Iterative Deepening Search.

- Weighted A* - A* with an added weight, to bias exploration toward goal. We looked at this a bit last time!

IDA* - Iterative Deepening A*

Objective: reduce memory requirements for A^{*}

- Like iterative deepening, but now the "cutoff" is the f-value (g+h) rather than the depth
- At each iteration, the cutoff value is the smallest f-value of any node that exceeded the cutoff on the previous iteration
- Avoids overhead associated with keeping a sorted queue of nodes, and the open list occupies only linear space.
- Two new parameters:
- curBound (any node with a bigger f-value is discarded)
- smallestNotExplored (the smallest f-value for discarded nodes in a round); when Frontier becomes empty, the search starts a new round with this bound.
- To compute "smallestNotExplored" most readily, expand all nodes with f-value EQUAL to the f-limit.

IDA* Example: 8-Puzzle

$\mathrm{f}(\mathrm{n})=\mathrm{g}(\mathrm{n})+\mathrm{h}(\mathrm{n})$
$h(n)=$ number of misplaced tiles
blank tile is white

```
\[
0+4=g(n)+h(n)=4
\]
Cutoff=4
```


IDA* Example: 8-Puzzle

$f(n)=g(n)+h(n)$
$h(n)=$ number of misplaced tiles
blank tile is white

IDA* Example: 8-Puzzle

$f(n)=g(n)+h(n)$
$h(n)=$ number of misplaced tiles
blank tile is white

IDA* Example: 8-Puzzle
$f(n)=g(n)+h(n)$
$h(n)=$ number of misplaced tiles

IDA* Example: 8-Puzzle

$f(n)=g(n)+h(n)$
$h(n)=$ number of misplaced tiles

8-Puzzle

$f(n)=g(n)+h(n)$
$h(n)=$ number of misplaced tiles

8-Puzzle

$f(n)=g(n)+h(n)$
$h(n)=$ number of misplaced tiles

8-Puzzle

$f(n)=g(n)+h(n)$
$h(n)=$ number of misplaced tiles
Comparing Iterative Deepening with A^{*} From Russell and Norvig

	For 8-puzzle, average number of states expanded over 100 randomly chosen problems in which optimal path		
	\ldots. steps 2	$\ldots .8$ steps	$\ldots 12$ steps
Iterative Deepening (see previous slides)	112	6,300	3.6×10^{6}
A^{*} search using "number of misplaced tiles" as the heuristic	13	39	227
A^{*} using "Sum of Manhattan distances" as the heuristic	12	25	73

IDA* - Iterative Deepening A*

- Optimal?
- Complete?
- Time and Space Complexity?
- Cycle Checking?

[^0]: CSC384, University of Toronto

