
Heuristic Search (Part 2)
• Reading note: Chapter 4 covers heuristic search.

Search animations: Pac Man
https://www.youtube.com/watch?v=2XjzjAfGWzY

CSC384, University of Toronto

Problem! Back to A*: is it Optimal?

CSC384, University of Toronto

CSC384, University of Toronto

Properties of A* depend on
conditions on h(n)

• To achieve completeness, optimality, and
desirably time and space complexity with A*
search, we must put some conditions on the
heuristic function h(n) and the search space.

CSC384, University of Toronto

Condition on h(n): Admissible

• Assume each transition due to an action a has cost ≥ ε > 0.

• Let h*(n) be the cost of an optimal path from n to a goal node

(if there is no path). Then an admissible heuristic satisfies the

condition:

h(n) ≤ h*(n)

an admissible heuristic never over-estimates the cost to reach the

goal, i.e., it is optimistic

• Hence h(g) = 0, for any goal node g

• Also h*(n) = if there is no path from n to a goal node

Admissible heuristics

Which heuristics are admissible for the 8 puzzle?

• h(n) = number of misplaced tiles

• h(n) = total Manhattan distance between tile locations in S and goal

locations in G

• h(n) = min (2, h*[n])

• h(n) = h*(n)

• h(n) = max (2, h*[n])

• h(n) = 0

CSC384, University of Toronto

Admissible heuristics

Say for the 8-puzzle:

h1(n) = number of misplaced tiles

h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 8

• h2(S) = ? 3+1+2+2+2+3+3+2 = 18

How to build a heuristic?

A useful technique is to simplify a problem when building

heuristics, and to let h(n) be the cost of reaching the goal in the

easier problem.

For example, in the 8-Puzzle you can only move a tile from

square A to B if A is adjacent (left, right, above, below) to B and

B is blank

We can relax some of these conditions and:

1. allow a move from A to B if A is adjacent to B (i.e. we

can ignore whether or not position is blank),

2. allow a move from A to B if B is blank (i.e. we can

ignore adjacency),

3. allow all moves from A to B (ignore both conditions).

How to build a heuristic?
• #3 leads to the misplaced tiles heuristic.

– To solve the puzzle, we need to move each tile into its final
position.

– Number of moves = number of misplaced tiles.

– Clearly h(n) = number of misplaced tiles ≤ the h*(n) the cost
of an optimal sequence of moves from n.

• #1 leads to the Manhattan distance heuristic.

– To solve the puzzle we need to slide each tile into its final
position.

– We can move vertically or horizontally.

– Number of moves = sum over all of the tiles of the number
of vertical and horizontal slides we need to move that tile
into place.

– Again h(n) = sum of the Manhattan distances ≤ h*(n)

• in a real solution we need to move each tile at least that
that far and we can only move one tile at a time.

Admissible heuristics make for optimal search
Why?

• Say we have an optimal path to ngoal with cost g(ngoal).
• Let n’goal be a sub-optimal path, meaning g(n’goal) > g(ngoal).
• Let n” be any sub-path of the optimal path on the Frontier.

Is it possible for the path to n’goal to be explored before the path to ngoal?

• No! Because f(ngoal) < f(n’goal)
• Also f(n’’) <= f(ngoal), because our heuristic is admissible.
• So, f(n’’) < f(n’goal)

Meaning sub-paths on the optimal path to ngoal will be explored before

any sub-optimal path to the goal!

• A* expands nodes, or paths, in order of increasing f value

• Gradually adds "f-contours"
• Each contour contains all paths with f=fi, where fi < fi+1

Admissible heuristics make for optimal search

Stronger condition on h(n):
Monotonic (or consistent)

• Stronger condition than admissibility

• A monotone heuristic satisfies the condition
h(n1) ≤ c(n1, a, n2) + h(n2)

• Note that there might more
than one transition
(action) that joins n1 and
n2, and the inequality must
hold for all of them.

• If h(n) is admissible and
monotonic, search will be
both optimal and not
“locally” mislead.

Consistency implies Admissibility

Assume consistency: h(n1) ≤ c(n1,a,n2) + h(n2)
Prove admissible: h(n) ≤ h*(n)

If no path exists from n to a goal, h*(n) = and h(n) ≤ h*(n).
Let the path to from n to ngoal be an OPTIMAL path from n
to a goal. Call the cost of this path h*(n), and call the cost of each
sub‐path from ni to ngoal, h*(ni).
We will prove h(n) ≤ h*(n) by induction on the length of this
optimal path.

Proof by Induction

Assume consistency: h(n1) ≤ c(n1,a,n2) + h(n2)
Prove admissible: h(n) ≤ h*(n)
Base Case:
h(ngoal) = 0 ≤ h*(ngoal) = 0
h(n1) ≤ c(n1,a1,ngoal) + h(ngoal) ≤ c(n1,a1,ngoal) + h*(ngoal) = h*(n1)
Induction:

Assume h(ni) ≤ h*(ni)

h(ni‐1) ≤ c(ni‐1,ai‐1,ni) + h(ni) ≤ c(ni‐1,ai‐1,ni) + h*(ni) = h*(ni‐1)

Some consequences of

Monotonicity
1. f-values of states in a path are non-decreasing.

i.e. if n1 and n2 are nodes along a path, then f(n1) ≤ f(n2)

Proof: f(n1) = g(n1) + h(n1) = cost(path to n1)+ h(n1)

≤ g(n1) + c(n1, a, n2) + h(n2)

But g(n1) + c(n1, a, n2) + h(n2) = g(n2) + h(n2) = f(n2)

Some consequences of

Monotonicity
1. f-values of states in a path are non-decreasing.

i.e. if n1 and n2 are nodes along a path, then f(n1) ≤ f(n2)

Proof: f(n1) = g(n1) + h(n1) = cost(path to n1)+ h(n1)

≤ g(n1) + c(n1, a, n2) + h(n2)

But g(n1) + c(n1, a, n2) + h(n2) = g(n2) + h(n2) = f(n2)

So f(n1) ≤ f(n2)

Some consequences of

Monotonicity
2. If n2 is expanded after n1, then f(n1) ≤ f(n2).

i.e. f-values of nodes that are expanded cannot decrease

during the search.

Why? When n1 was selected for expansion, n2 was either:

1. Already on the frontier, meaning f(n1) ≤ f(n2). Otherwise

we would have expanded n2 before n1.

2. Added to the frontier as a result of n1’s expansion,

meaning n2 and n1 lie along the same path. If this is the

case, as we demonstrated on the prior slide, f(n1) ≤ f(n2).

Some consequences of

Monotonicity
3. If node n has been expanded, every path with a lower f-value

than n has already been expanded.

Say we just expanded node ni on a path to node nk, and
that f(nk) < f(n).

This means ni+1 is on the frontier and f(ni+1) ≤ f(nk),
because they are both on the same path.

BUT if ni+1 were on the frontier at the same time as node n,

it would have been expanded before n because f(ni+1) ≤

f(nk) < f(n).

Thus, n can’t have been expanded before every path with a

lower f-value has been expanded.

Some consequences of

Monotonicity
4. The first time A* expands a node, it has found the minimum cost

path to that node.

f(of the first discovered path to n) = cost(of the first discovered path
to n) + h(n).

Likewise,

f(of any other path to n) = cost(of any other path to n) + h(n).

From the prior slide we know:

f(of the first discovered path to n) ≤ f(of any other path to n).

This means, by substitution:

cost(of 1st discovered path to n) ≤ cost(of any other path to n)

Hence, the first discovered path is the optimal one!

Monotonic, Admissible A*
Complete?

YES. Consider a least cost path to a goal node

–SolutionPath = <Start→ n1→ …→ G> with cost c(SolutionPath).

–Since each action has a cost ≥ ε > 0, there are only a finite number of paths
that have f-value < c(SolutionPath). None of these paths lead to a goal node
since SolutionPath is a least cost path to the goal.

–So eventually SolutionPath, or some equal cost path to a goal must be
expanded.

Time and Space complexity?

–When h(n) = 0 for all n, h is monotone (A* becomes uniform-cost search)!

–When h(n) > 0 for some n and still admissible, the number of nodes
expanded will be no larger than uniform-cost.

–Hence the same bounds as uniform-cost apply. (These are worst case
bounds). Still exponential complexity unless we have a very good h!

–In real world problems, we sometimes run out of time and memory. We
will introduce IDA* to address some memory issues, but IDA* isn’t very
good when many cycles are present.

Monotonic, Admissible A*
Optimal?

YES. As we saw, the first path to a goal node must be

optimal.

Cycle Checking?

We can use a simple implementation of cycle checking

(multiple path checking) - just reject all search nodes that

visit a state already visited by a previously expanded

node. We need keep only the first path to a state,

rejecting all subsequent paths.

Effect of Heuristic Functions

• What portion of the state space will be
explored by UCS? A*? Greedy search?
Weighted A*?

START GOAL

Limitations of A* Search

• Observation: While A* may expand less of the
state space, it is still constrained by speed or
memory (many states are explored, on Frontier).

• Tools to address these problems:
– IDA* (Iterative Deepening A*) ‐ similar to

Iterative Deepening Search.
– Weighted A* ‐ A* with an added weight, to bias

exploration toward goal. We looked at this a bit
last time!

IDA* ‐ Iterative Deepening A*
Objective: reduce memory requirements for A*

• Like iterative deepening, but now the “cutoff” is the f-value (g+h)

rather than the depth

• At each iteration, the cutoff value is the smallest f-value of any node

that exceeded the cutoff on the previous iteration

• Avoids overhead associated with keeping a sorted queue of nodes,

and the open list occupies only linear space.

• Two new parameters:

– curBound (any node with a bigger f-value is discarded)

– smallestNotExplored (the smallest f-value for discarded nodes in

a round); when Frontier becomes empty, the search starts a new

round with this bound.

– To compute “smallestNotExplored” most readily, expand all nodes

with f-value EQUAL to the f-limit.

IDA* Example: 8-Puzzle

0 + 4 = g(n) + h(n) = 4

1 + 6 = g(n) + h(n) = 7

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles
blank tile is white

Cutoff=4

IDA* Example: 8-Puzzle

4

4

7

Cutoff=4

7

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles
blank tile is white

IDA* Example: 8-Puzzle

4

4

7

Cutoff=4

7

6

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles
blank tile is white

IDA* Example: 8-Puzzle

4

4

7

Cutoff=4

7

6

6

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles

4

IDA* Example: 8-Puzzle

4

7

Cutoff=4

7

6

67

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles

IDA* Example: 8-Puzzle

4

7

Cutoff=6

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles

IDA* Example: 8-Puzzle

4

4

7

Cutoff=6

7

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles

8-Puzzle

4

4

7

Cutoff=6

7

6

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles

8-Puzzle

4

4

7

Cutoff=6

7

6

8

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles

8-Puzzle

4

4

7

Cutoff=6

7

6

8

6

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles

8-Puzzle

4

4

7

Cutoff=6

7

6

8

6 6

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles

8-Puzzle

4

4

7

Cutoff=6

7

6

8

6 6

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles

IDA* ‐ Iterative Deepening A*

• Optimal?

• Complete?

• Time and Space Complexity?

• Cycle Checking?

