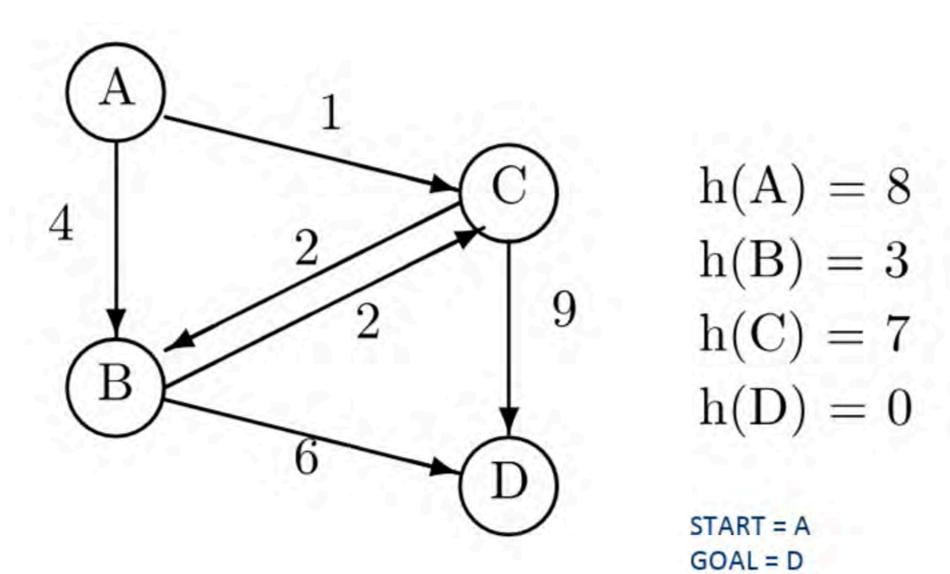
Heuristic Search (Part 2)

• Reading note: Chapter 4 covers heuristic search.

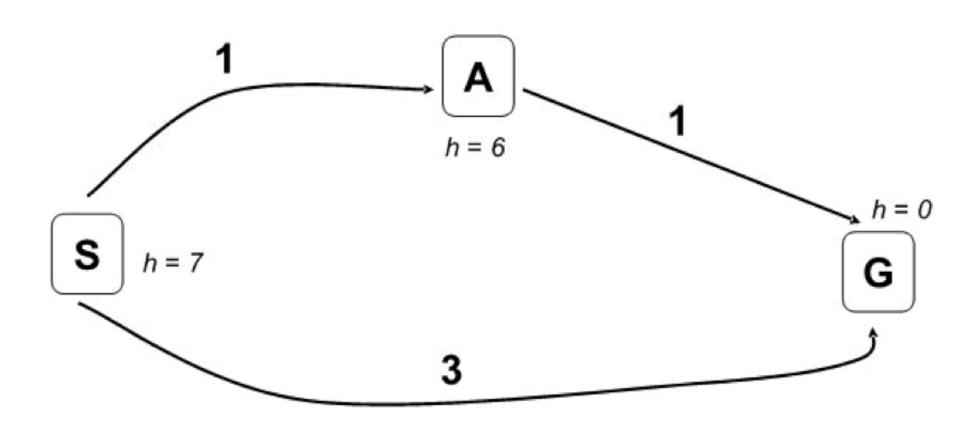
Search animations: Pac Man

https://www.youtube.com/watch?v=2XjzjAfGWzY

Problem!



Back to A*: is it Optimal?



Properties of A* depend on conditions on h(n)

 To achieve completeness, optimality, and desirably time and space complexity with A* search, we must put some conditions on the heuristic function h(n) and the search space.

Condition on h(n): Admissible

- Assume each transition due to an action a has cost ≥ ε > 0.
- Let h*(n) be the cost of an optimal path from n to a goal node (∞ if there is no path). Then an admissible heuristic satisfies the condition:

$$h(n) \le h^*(n)$$

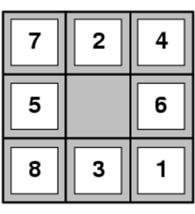
an admissible heuristic never over-estimates the cost to reach the goal, i.e., it is optimistic

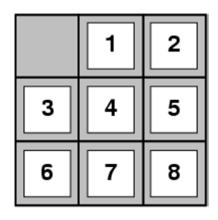
- Hence h(g) = 0, for any goal node g
- Also $h^*(n) = \infty$ if there is no path from n to a goal node

Admissible heuristics

Which heuristics are admissible for the 8 puzzle?

- h(n) = number of misplaced tiles
- h(n) = total Manhattan distance between tile locations in S and goal locations in G
- $h(n) = \min(2, h^*[n])$
- $h(n) = h^*(n)$
- $h(n) = \max(2, h^*[n])$
- h(n) = 0





Goal State

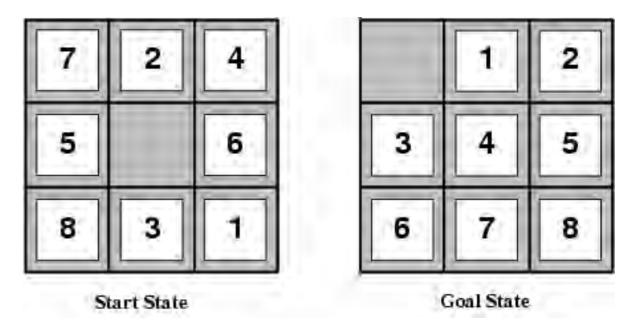
Admissible heuristics

Say for the 8-puzzle:

 $h_1(n)$ = number of misplaced tiles

 $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)



•
$$h_1(S) = ?8$$

•
$$h_2(S) = ? 3+1+2+2+3+3+2 = 18$$

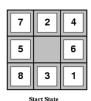
How to build a heuristic?

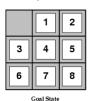
A useful technique is to simplify a problem when building heuristics, and to let h(n) be the cost of reaching the goal in the easier problem.

For example, in the 8-Puzzle you can only move a tile from square A to B if A is adjacent (left, right, above, below) to B and B is blank

We can relax some of these conditions and:

- 1. allow a move from A to B if A is adjacent to B (i.e. we can ignore whether or not position is blank),
- 2. allow a move from A to B if B is blank (i.e. we can ignore adjacency),
- 3. allow all moves from A to B (ignore both conditions).





How to build a heuristic?

- #3 leads to the misplaced tiles heuristic.
 - To solve the puzzle, we need to move each tile into its final position.
 - Number of moves = number of misplaced tiles.
 - Clearly h(n) = number of misplaced tiles ≤ the h*(n) the cost of an optimal sequence of moves from n.
- #1 leads to the Manhattan distance heuristic.
 - To solve the puzzle we need to slide each tile into its final position.
 - We can move vertically or horizontally.
 - Number of moves = sum over all of the tiles of the number of vertical and horizontal slides we need to move that tile into place.
 - Again h(n) = sum of the Manhattan distances ≤ h*(n)
 - in a real solution we need to move each tile at least that that far and we can only move one tile at a time.

Admissible heuristics make for optimal search

Why?

- Say we have an optimal path to n_{goal} with cost g(n_{goal}).
- Let n'_{goal} be a sub-optimal path, meaning g(n'_{goal}) > g(n_{goal}).
- Let n" be any sub-path of the optimal path on the Frontier.

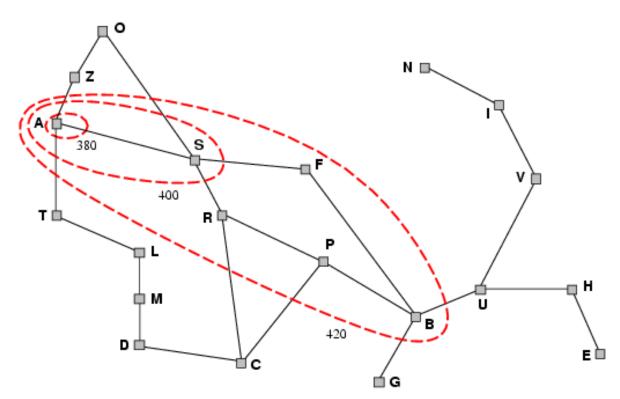
Is it possible for the path to n'_{goal} to be explored before the path to n_{goal} ?

- No! Because $f(n_{goal}) < f(n'_{goal})$
- Also f(n") <= f(n_{goal}), because our heuristic is admissible.
- So, $f(n'') < f(n'_{goal})$

Meaning sub-paths on the optimal path to n_{goal} will be explored before any sub-optimal path to the goal!

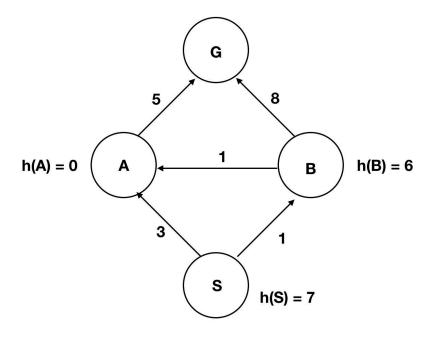
Admissible heuristics make for optimal search

- A* expands nodes, or paths, in order of increasing f value
- Gradually adds f contours
- Each contour contains all paths with $f=f_i$, where $f_i < f_{i+1}$



Stronger condition on h(n): Monotonic (or consistent)

- Stronger condition than admissibility
- A monotone heuristic satisfies the condition h(n1) ≤ c(n1, a, n2) + h(n2)
- Note that there might more than one transition (action) that joins n1 and n2, and the inequality must hold for all of them.
- If h(n) is admissible and monotonic, search will be both optimal and not "locally" mislead.



Consistency implies Admissibility

Assume consistency: $h(n1) \le c(n1,a,n2) + h(n2)$

Prove admissible: $h(n) \le h^*(n)$

If no path exists from n to a goal, $h^*(n) = \infty$ and $h(n) \le h^*(n)$. Let the path to from n to n_{goal} be an OPTIMAL path from n to a goal. Call the cost of this path $h^*(n)$, and call the cost of each sub-path from ni to n_{goal} , $h^*(ni)$.

We will prove $h(n) \le h^*(n)$ by induction on the length of this optimal path.

Proof by Induction

Assume consistency: $h(n1) \le c(n1,a,n2) + h(n2)$

Prove admissible: $h(n) \le h^*(n)$

Base Case:

```
h(n_{goal}) = 0 \le h^*(n_{goal}) = 0

h(n_1) \le c(n_1, a_1, n_{goal}) + h(n_{goal}) \le c(n_1, a_1, n_{goal}) + h^*(n_{goal}) = h^*(n_1)
```

Induction:

Assume $h(n_i) \le h^*(n_i)$ $h(n_{i-1}) \le c(n_{i-1}, a_{i-1}, n_i) + h(n_i) \le c(n_{i-1}, a_{i-1}, n_i) + h^*(n_i) = h^*(n_{i-1})$

1. f-values of states in a path are non-decreasing.

i.e. if n1 and n2 are nodes along a path, then $f(n1) \le f(n2)$

Proof:
$$f(n1) = g(n1) + h(n1) = cost(path to n1) + h(n1)$$

 $\leq g(n1) + c(n1, a, n2) + h(n2)$

But
$$g(n1) + c(n1, a, n2) + h(n2) = g(n2) + h(n2) = f(n2)$$

1. f-values of states in a path are non-decreasing.

i.e. if n1 and n2 are nodes along a path, then $f(n1) \le f(n2)$

Proof:
$$f(n1) = g(n1) + h(n1) = cost(path to n1) + h(n1)$$

 $\leq g(n1) + c(n1, a, n2) + h(n2)$

But
$$g(n1) + c(n1, a, n2) + h(n2) = g(n2) + h(n2) = f(n2)$$

So
$$f(n1) \leq f(n2)$$

- 2. If n2 is expanded after n1, then $f(n1) \le f(n2)$.
 - i.e. f-values of nodes that are expanded cannot decrease during the search.

Why? When n1 was selected for expansion, n2 was either:

- 1. Already on the frontier, meaning f(n1) ≤ f(n2). Otherwise we would have expanded n2 before n1.
- 2. Added to the frontier as a result of n1's expansion, meaning n2 and n1 lie along the same path. If this is the case, as we demonstrated on the prior slide, f(n1) ≤ f(n2).

- 3. If node n has been expanded, every path with a lower f-value than n has already been expanded.
 - Say we just expanded node ni on a path to node nk, and that f(nk) < f(n).</p>
 - This means ni+1 is on the frontier and f(ni+1) ≤ f(nk), because they are both on the same path.
 - BUT if ni+1 were on the frontier at the same time as node n, it would have been expanded before n because f(ni+1) ≤ f(nk) < f(n).</p>
 - Thus, n can't have been expanded before every path with a lower f-value has been expanded.

4. The first time A* expands a node, it has found the minimum cost path to that node.

f(of the first discovered path to n) = cost(of the first discovered path to n) + h(n).

Likewise,

f(of any other path to n) = cost(of any other path to n) + h(n).

From the prior slide we know:

 $f(of the first discovered path to n) \leq f(of any other path to n).$

This means, by substitution:

 $cost(of 1st discovered path to n) \leq cost(of any other path to n)$

Hence, the first discovered path is the optimal one!

Monotonic, Admissible A*

Complete?

- YES. Consider a least cost path to a goal node
- -SolutionPath = <Start \rightarrow n1 \rightarrow ... \rightarrow G> with cost c(SolutionPath).
- –Since each action has a cost $\geq \varepsilon > 0$, there are only a finite number of paths that have f-value < c(SolutionPath). None of these paths lead to a goal node since SolutionPath is a least cost path to the goal.
- –So eventually SolutionPath, or some equal cost path to a goal must be expanded.

Time and Space complexity?

- -When h(n) = 0 for all n, h is monotone (A* becomes uniform-cost search)!
- -When h(n) > 0 for some n and still admissible, the number of nodes expanded will be no larger than uniform-cost.
- –Hence the same bounds as uniform-cost apply. (These are worst case bounds). Still exponential complexity unless we have a very good *h*!
- -In real world problems, we sometimes run out of time and memory. We will introduce IDA* to address some memory issues, but IDA* isn't very good when many cycles are present.

Monotonic, Admissible A*

Optimal?

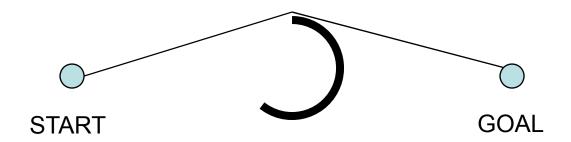
YES. As we saw, the first path to a goal node must be optimal.

Cycle Checking?

We can use a simple implementation of cycle checking (multiple path checking) - just reject all search nodes that visit a state already visited by a previously expanded node. We need keep only the first path to a state, rejecting all subsequent paths.

Effect of Heuristic Functions

 What portion of the state space will be explored by UCS? A*? Greedy search? Weighted A*?



Limitations of A* Search

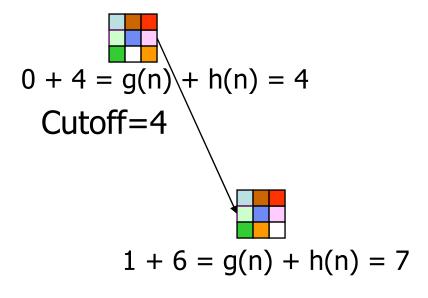
- Observation: While A* may expand less of the state space, it is still constrained by speed or memory (many states are explored, on Frontier).
- Tools to address these problems:
 - IDA* (Iterative Deepening A*) similar to Iterative Deepening Search.
 - Weighted A* A* with an added weight, to bias exploration toward goal. We looked at this a bit last time!

IDA* - Iterative Deepening A*

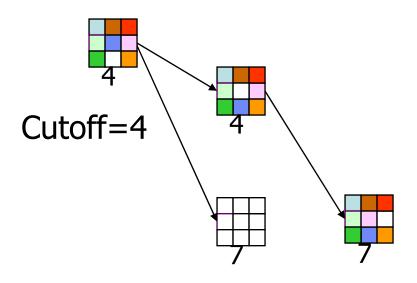
Objective: reduce memory requirements for A*

- Like iterative deepening, but now the "cutoff" is the f-value (g+h) rather than the depth
- At each iteration, the cutoff value is the smallest f-value of any node that exceeded the cutoff on the previous iteration
- Avoids overhead associated with keeping a sorted queue of nodes, and the open list occupies only linear space.
- Two new parameters:
 - curBound (any node with a bigger f-value is discarded)
 - smallestNotExplored (the smallest f-value for discarded nodes in a round); when Frontier becomes empty, the search starts a new round with this bound.
 - To compute "smallestNotExplored" most readily, expand all nodes with f-value EQUAL to the f-limit.

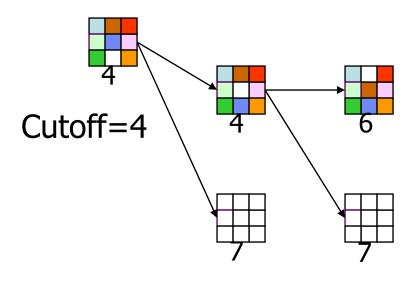
f(n) = g(n) + h(n) h(n) = number of misplaced tiles blank tile is white



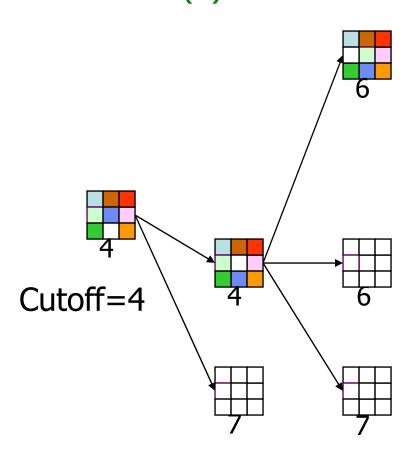
f(n) = g(n) + h(n) h(n) = number of misplaced tiles blank tile is white



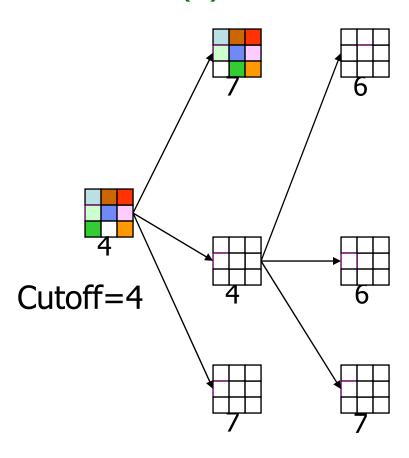
f(n) = g(n) + h(n) h(n) = number of misplaced tiles blank tile is white



f(n) = g(n) + h(n)h(n) = number of misplaced tiles

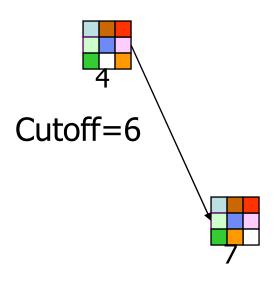


f(n) = g(n) + h(n)h(n) = number of misplaced tiles

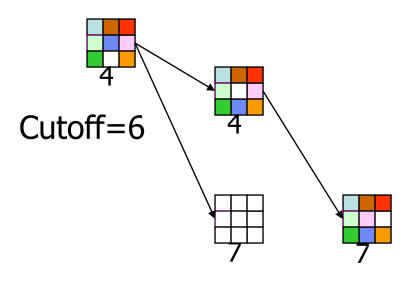


$$f(n) = g(n) + h(n)$$

h(n) = number of misplaced tiles

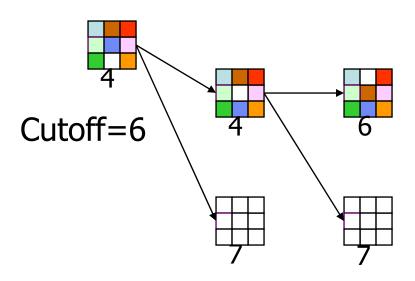


f(n) = g(n) + h(n)h(n) = number of misplaced tiles



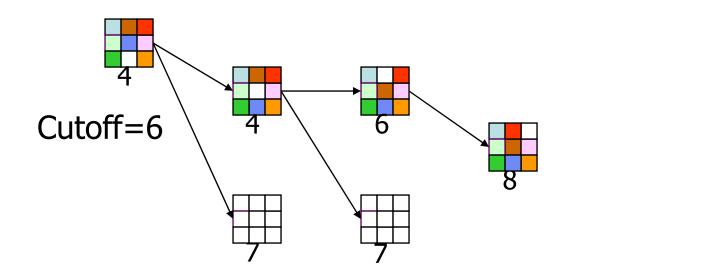
$$f(n) = g(n) + h(n)$$

h(n) = number of misplaced tiles



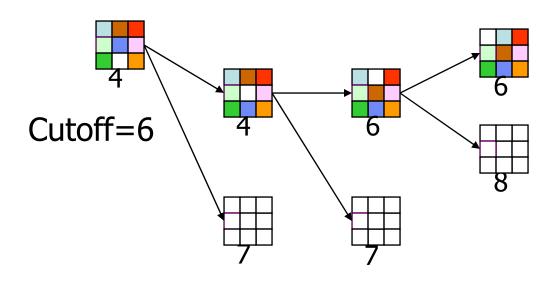
$$f(n) = g(n) + h(n)$$

h(n) = number of misplaced tiles



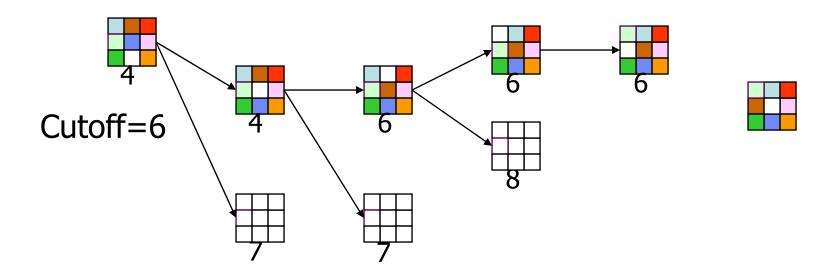
$$f(n) = g(n) + h(n)$$

h(n) = number of misplaced tiles



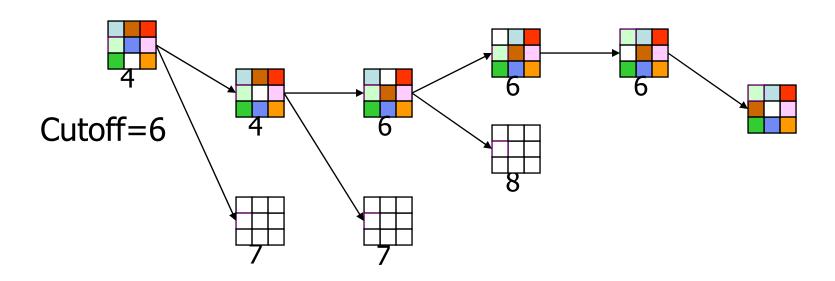
$$f(n) = g(n) + h(n)$$

h(n) = number of misplaced tiles



$$f(n) = g(n) + h(n)$$

h(n) = number of misplaced tiles



Comparing Iterative Deepening with A*

From Russell and Norvig

	For 8-puzzle, average number of states expanded over 100 randomly chosen problems in which optimal path is length		
	4 steps	8 steps	12 steps
Iterative Deepening (see previous slides)	112	6,300	3.6 x 10 ⁶
A* search using "number of misplaced tiles" as the heuristic	13	39	227
A* using "Sum of Manhattan distances" as the heuristic	12	25	73

IDA* - Iterative Deepening A*

- Optimal?
- Complete?
- Time and Space Complexity?
- Cycle Checking?