
Bahar Aameri & Sonya Allin, University of Toronto, Winter 2020

Search
• Chapter 3 of R&N 3rd edition is very useful

reading.
• Chapter 4 of R&N 3rd edition is worth

reading for enrichment.

(R&N = Russell and Norvig, Artificial Intelligence: a Modern Approach)

1

Search
Credits: We’re often revising and updating slides. Search slides are drawn from or
inspired by a multitude of sources including me and …

Faheim Bacchus
Sheila McIlraith
Andrew Moore
Hojjat Ghaderi
Craig Boutillier
Jurgen Strum
Shaul Markovitch

Thank you for sharing!!

2

Search
Successful

– Many other AI problems can be successfully solved by search
– Outperform humans in some areas (e.g. games)

Practical
– Many problems don't have specific algorithms for solving

them. Casting as search problems is often the easiest way of
solving them.

– Search can also be useful in approximation (e.g., local search
in optimization problems).

– Problem specific heuristics provides search with a way of
exploiting extra knowledge.

Some critical aspects of “intelligent” behaviour, e.g., planning, can
be cast as search.

3

A Search Problem:
How do we plan our holiday?

• We must take into account various preferences and
constraints to develop a schedule.

• An important technique in developing such a schedule is
“hypothetical” reasoning.

• Example: I’m on holiday in B.C.
– If I fly into Vancouver and drive a car to Whistler, I’ll have to

drive on the roads at night. How desirable is this?
– If I am in Whistler and leave at 6:30am, I can arrive in Kamloops

by lunchtime.

4

• This kind of hypothetical reasoning involves asking
– what state will I be in after taking certain actions, or after

certain sequences of events?
• From this we can reason about particular sequences of

events or actions one should try to bring about to achieve a
desirable state.

• Search is a computational method for capturing a particular
version of this kind of reasoning.

A Search Problem:
How do we plan our holiday?

5 6

More search problems

7

Limitations of Search

Search only shows how to solve the problem
once we have it correctly formulated.

8

The Formalism
To formulate a problem as a search problem we need the
following components:

1.a state space over which to search. The state space necessarily involves
abstracting the real problem.
2.an initial state that best represents your current state.
3.a desired (or goal) condition you want to achieve.
4.actions (or successor functions) that allow move one from state to state.
The actions are abstractions of actions you could actually perform.

Optional ingredients:
1.costs, which represent the cost of moving from state to state (taking an
action, advancing to a successor state).
2. Heuristics, to help guide the search process.

9

A solution

Once you have a formalized search problem, there are a
number of algorithms one can use to solve it.

A solution is a sequence of actions or moves that can transform
your current state into a state where desired (or goal) conditions

hold.

10

Example 1: Romania Travel
Currently in Arad, need to get to Bucharest ASAP. Can we
formalize this search?

11

Example 1: Romania Travel
Currently in Arad, need to get to Bucharest ASAP. What is the
state space?

– state space:
– actions (successor

functions):
– initial state:
– desired (or goal)

condition:

12

Example 1: Romania Travel
– state space: the cities where you could be located.

NB: In our abstraction: we are ignoring the low level details
of driving, states where you are on the road between cities,
etc.

– actions (successor functions): driving will advance you from
one city to the next.

– initial state: in Arad
– desired (or goal) condition: be in a state where you are in

Bucharest. (How many states satisfy this condition?)

A solution will be a sequence of cities to travel through to get to
Bucharest

13

Example 2: Water Jugs

We have a 3 gallon (liter) jug and a 4 gallon jug. We can fill
either jug to the top from a tap, we can empty either jug, or we
can pour one jug into the other (at least until the other jug is full).

–state space:
–actions (successor functions):
–initial state:
–desired (or goal) condition:

14

Example 2: Water Jugs
We have a 3 gallon (liter) jug and a 4 gallon jug. We can fill
either jug to the top from a tap, we can empty either jug, or we
can pour one jug into the other (at least until the other jug is full).

–state space: pairs of numbers (gal3, gal4) where gal3 is the
number of gallons in the 3 gallon jug, and gal4 is the number of
gallons in the 4 gallon jug.
–actions (successor functions): Empty-3-Gallon, Empty-4-
Gallon, Fill-3-Gallon, Fill-4-Gallon, Pour-3-into-4, Pour 4-into-3.
–initial state: Various, e.g., (0,0)
–desired (or goal) condition: Various, e.g., (0,2) or (*, 3) where *
means we don't care

15

Reflections on the Water Jug
Problem

– If we start off with gal3 and gal4 as integers, can
only reach integer values.

– Some values, e.g., (1,2) are not reachable from
some initial state, e.g., (0,0).

– Some actions are no-ops. They do not change
the state, e.g.,

• (0,0)  Empty-3-Gallon  (0,0)

16

Example 3: The 8‐Puzzle

Rules: Slide a tile into the blank spot. Get numbers in order,
with blank spot at bottom right.

17

Example 3: The 8‐Puzzle

– state space:
– actions (successor

functions):
– initial state:
– desired (or goal)

condition:

18

Example 3: The 8‐Puzzle
– state space: the different configurations of the tiles.

How many different states?
– actions (or successor functions): moving the blank

up, down, left, right. Can every action be performed

in every state?

– initial state: e.g., state shown on previous slide.
– desired (or goal) condition: a state where tiles are in

the positions shown on the previous slide.

Solution will be a sequence of moves of the blank that
transform the initial state to a goal state.

19

Reflections on the 8‐Puzzle
Problem

• Although there are 9! different configurations of the tiles
(362,880) in fact the state space is divided into two
disjoint parts.

• Only when the blank is in the middle are all four actions
possible.

• Our goal condition is satisfied by only a single state. But
one could easily have a goal condition like:
– The 8 is in the upper left hand corner.

• How many different states satisfy this goal?

20

Search Space for 8‐Puzzle Problem

21

More complex situations

• Sometimes, actions may lead to multiple states, like
flipping a coin.

• Other times, we may not be sure of a given state (prize
is behind door 1, 2, or 3). In these situations, we might
want to consider how likely different states and action
outcomes are.

• Later we will see some techniques for reasoning under
uncertainty.

• Some of these will be probabilistic, i.e. they will assign
probabilities to given outcomes.

22

Drawing Search: Graphical
Representation

It can sometimes be useful to represent a search space as a graph
containing Vertices (V) and Edges (E). Vertices can be used to represent

states in the search space and edges to represent transitions resulting from
actions (or successor functions). This assumes a finite search space.

23

Graphical Representation of
Search Problem (Tree)

Search spaces can be represented by a
particular kind of graph called a tree; attributes
include a solution depth (d) and maximum
branching factor (b). Note that the same state
may appear many times in the tree. 24

Algorithms for Search

25

Algorithms for Search

26

A Searching Template

27

A Searching Template
• To explore the state space during a search, we will iteratively

apply the successor function to the states we discover.
• Each time, the successor function S(x) will yield a set of

states that can be reached from x via any single action.
• As we search, we can annotate states by the action used to

obtain them in order to keep a record of paths to a state:
• S(x) = {<y,a>, <z,b>}

arrive at y via action a, arrive at z via action b.
• S(x) = {<y,a>, <z,b>}

arrive at y via action a, also y via alternative action b.
• We can also reference each state’s origin as we search (i.e.,

the preceding state).
• States may also be annotated with the cost of the path

traversed in order to arrive at it.
28

A Searching Template
• We put nodes (or states) we we haven’t yet explored or

expanded, but want to explore, in a list called the
Frontier (or Open).

• Initially, all that is in the Frontier is the initial state.
• At each iteration, we pull a node from the Frontier, apply

S(x), and insert children back into the Frontier.

29

Example

1. Initial nodes on the Frontier: {Arad}.
2. Expand Arad: {Z<A>, T<A>, S<A>},
3. Expand Sibiu: {Z<A>, T<A>, A<S,A>, O<S,A>, F<S,A>, R<S,A>}
4. Expand Fagaras: {Z<A>, T<A>, A<S,A>, O<S,A>, R<S,A>,

S<F,S,A>, B<F,S,A>}

Solution is now on frontier; cost of this solution is 140+99+211 = 450
30

Example

1. Initial nodes on the Frontier: {Arad}.
2. Expand Arad: {Z<A>, T<A>, S<A>},
3. Expand Sibiu: {Z<A>, T<A>, A<S,A>, O<S,A>, F<S,A>, R<S,A>}
4. Expand R.V.: {Z<A>, T<A>, A<S,A>, O<S,A>, R<S,A>, S<R,S,A>,

P<R,S,A>, C<R,S,A>}
5. Expand Pitesti: {Z<A>, T<A>, A<S,A>, O<S,A>, R<S,A>, S<R,S,A>,

P<R,S,A>, C<R,S,A>, R<P,R,S,A>, C<P,R,S,A>, B<P,R,S,A>}

Solution is now on frontier; cost of this solution is 140+80+97+101= 418
31

Reflections on Example

1. In this problem, the Frontier here contains a set of paths, not just
states.

2. Cycles can create problems
3. The order states are selected from the Frontier has a critical effect on:

• Whether or not a solution is found
• The cost of the solution that is found.
• The time and space required by the search.

32

Search Tree Representation

33

Critical Properties of Search
• Completeness: will the search always find a solution

if a solution exists?
• Optimality: will the search always find the least cost

solution? (when actions have costs)
• Time complexity: what is the maximum number of

nodes (paths) than can be expanded or generated?
• Space complexity: what is the maximum number of

nodes (paths) that have to be stored in memory?

34

Uninformed Search Strategies

• These are strategies that adopt a fixed rule for selecting
the next state to be expanded.

• The rule remains the same for any search problem being
solved; it does not change.

• These strategies do not take into account any domain
specific information about the particular search problem.

• Uninformed search techniques:
– Breadth-First, Uniform-Cost, Depth-First, Depth-Limited,

Iterative-Deepening

35

Selecting Nodes on the Frontier

Selection can be achieved by employing an appropriate
ordering of the frontier set, i.e.:

1. Order the elements on the Frontier.
2. Always select the first element.

36

Breadth First Search

1. Place Start in the Frontier.
2. Expand all nodes reachable from Start in 1 step, but not more than 1; add path to

back of Frontier list.
3. Expand all nodes reachable from Start in 2 step, but not more than 2; add path to

back of Frontier list.
4. Expand all nodes reachable from Start in 3 step, but not more than 3; add to path

back of Frontier list.
5. And so on ….

37 38

39 40

41 42

Solved!!

Note that nodes (or states) on the frontier include references to parents in this
example.

43 38

BFS for the Water Jug Problem
initial state = (0,0), goal state = (*,2), actions (successor
functions): Empty-3-Gallon, Empty-4-Gallon, Fill-3-Gallon, Fill-4-
Gallon, Pour-3-into-4, Pour 4-into-3.

1.Frontier = {<(0,0)>}

Here, we store complete paths on the frontier.
44

BFS for the Water Jug Problem
initial state = (0,0), goal state = (*,2), actions (successor
functions): Empty-3-Gallon, Empty-4-Gallon, Fill-3-Gallon, Fill-4-
Gallon, Pour-3-into-4, Pour 4-into-3.

1.Frontier = {<(0,0)>}
2.Frontier = {<(0,0),(3,0)>, <(0,0),(0,4)>}

Here, we store complete paths on the frontier.
45

BFS for the Water Jug Problem
initial state = (0,0), goal state = (*,2), actions (successor
functions): Empty-3-Gallon, Empty-4-Gallon, Fill-3-Gallon, Fill-4-
Gallon, Pour-3-into-4, Pour 4-into-3.

1.Frontier = {<(0,0)>}
2.Frontier = {<(0,0),(3,0)>, <(0,0),(0,4)>}
3.Frontier = {<(0,0),(0,4)>, <(0,0),(3,0),(0,0)>,

<(0,0) ,(3,0),(3,4)>, <(0,0),(3,0),(0,3)>

Here, we store complete paths on the frontier.
46

BFS for the Water Jug Problem
initial state = (0,0), goal state = (*,2), actions (successor
functions): Empty-3-Gallon, Empty-4-Gallon, Fill-3-Gallon, Fill-4-
Gallon, Pour-3-into-4, Pour 4-into-3.

1.Frontier = {<(0,0)>}
2.Frontier = {<(0,0),(3,0)>, <(0,0),(0,4)>}
3.Frontier = {<(0,0),(0,4)>, <(0,0),(3,0),(0,0)>,

<(0,0) ,(3,0),(3,4)>, <(0,0),(3,0),(0,3)>}
4.Frontier = {<(0,0),(3,0),(0,0)>, <(0,0),(3,0),(3,4)>,

<(0,0),(3,0),(0,3)>, <(0,0),(0,4),(0,0)>,
<(0,0),(0,4),(3,4)>, <(0,0),(0,4),(3,1)>}

Here, we store complete paths on the frontier.
47

BFS for the Water Jug Problem

In the tree above we order the states explored; paths to states are
represented by the path from the root to that states.

Breadth‐First Search explores the search space level by level.

48

Breadth‐First Properties

The tree representation enables us to measure
time and space complexity.
– let b be the maximum number of successors of
any node (i.e. the maximal branching factor).

– let d be the depth of the shortest solution.
• Root at depth 0 generates a path of length 1
• So d = length of path ‐ 1

What is the Time Complexity?
49 44

Breadth‐First Properties

Measuring time and space complexity.
– let b be the maximum number of successors of
any node (maximal branching factor).

– let d be the depth of the shortest solution.
• Root at depth 0 generates a path of length 1
• So d = length of path ‐ 1

What is the Time Complexity?
1 + b + b2 + b3 + … + bd-1 + bd + b(bd – 1) = O(bd+1)

50

Breadth‐First Properties
Space Complexity?

51

Breadth‐First Properties
Space Complexity?
O(bd+1): If goal node is last node at level d, all of the successors of the other

nodes will be on the Frontier when the goal node is expanded b(bd – 1)

Optimality?

52

Breadth‐First Properties
Space Complexity?
O(bd+1): If goal node is last node at level d, all of the successors of the other

nodes will be on the Frontier when the goal node is expanded b(bd – 1)

Optimality?
We will find the shortest length solution. Is this the least cost solution?

Completeness?

53

Breadth‐First Properties
Space Complexity?
O(bd+1): If goal node is last node at level d, all of the successors of the other

nodes will be on the Frontier when the goal node is expanded b(bd – 1)

Optimality?
We will find the shortest length solution. Is this the least cost solution?

Completeness?

Eventually we must examine all paths of length d, and thus we will find a solution
if one exists.

54

Breadth‐First Properties
Space complexity is a real problem.

– E.g., let b = 10, and say 100,000 nodes can be
expanded per second and each node requires 100
bytes of storage:

Depth Nodes Time Memory

1 1 0.01 millisec. 100 bytes

6 106 10 sec. 100 MB

8 108 17 min. 10 GB
9 109 3 hrs. 100 GB

• Typically run out of space before we run out of
time in most applications.

55

Depth‐First Search
Like BFS, but instead of at the back we place the new
paths that extend the current path at the front of the
Frontier.

56

Depth‐First Search
initial state = (0,0), goal state = (*,2), actions (successor functions)
= Empty-3-Gallon, Empty-4-Gallon, Fill-3-Gallon, Fill-4-Gallon, Pour-3-
into-4, Pour 4-into-3.

1. Frontier = {<(0,0)>}
2. Frontier = {<(0,0), (3,0)>, <(0,0), (0,4)>}
3. Frontier = {<(0,0),(3,0),(0,0)>, <(0,0),(3,0),(3,4)>,

<(0,0),(3,0),(0,3)>, <(0,4),(0,0)>}
4. Frontier = {<(0,0),(3,0),(0,0),(3,0)>, <(0,0),(3,0),(0,0),(0,4)>

<(0,0), (3,0), (3,4)>, <(0,0),(3,0),(0,3)>,
<(0,0),(0,4)>}

57

Depth‐First Search

Red nodes are backtrack points (these nodes remain on Frontier).

58

N

S

E W

start What would BFS do?

59 60

Depth‐First Properties

Complete?

61

Depth‐First Properties

Complete?
NO, if there are infinite paths
NO, if there are cycles in the graph

– Prune paths with cycles (duplicate states)
YES, if state space is finite.

Optimal?

62

Depth‐First Properties

Complete?
NO, if there are infinite paths
NO, if there are cycles in the graph

– Prune paths with cycles (duplicate states)
YES, if state space is finite.

Optimal?
NO

63

Depth‐First Properties

Time Complexity?

64

Depth‐First Properties

Time Complexity?
– O(bm) where m is the length of the longest path in the state space.
– Very bad if m is much larger than d (shortest path to a goal state), but if

there are many solution paths it can be much faster than breadth first
(by good luck, can bump into a solution quickly).

Space Complexity?

65

Depth‐First Properties
Time Complexity?

– O(bm) where m is the length of the longest path in the state space.
– Very bad if m is much larger than d (shortest path to a goal state), but if

there are many solution paths it can be much faster than breadth first
(by good luck, can bump into a solution quickly).

Space Complexity?
– O(bm), linear space!

• Only explore a single path at a time.
• Frontier only contains the deepest node on the current path along

with the backtrack points (references to unexplored siblings of
states).

– A significant advantage of DFS

66

Depth Limited Search
Breadth first has space problems. Depth first can run off down a
very long (or infinite) path.

Depth limited search
– Perform depth first search but only to a depth limit d.

• The ROOT is at DEPTH 0. ROOT is a path of length 1.
– No node representing a path of length more than d+1 is

placed on the Frontier.
– “Truncate” the search by looking only at paths of length

d+1 or less.

•Now infinite length paths are not a problem.
•But will only find a solution if a solution of DEPTH ≤ d exists.

67

Depth Limited Search
DLS (Frontier, Successors, Goal?) /* Call with Frontier = {<START>} */

WHILE (Frontier not EMPTY) {
n= select first node from Frontier
Curr = terminal state of n
If(Goal?(Curr)) return n

If Depth(n) < D //Don't add successors if Depth(n) = D!!

Else
Frontier= (Frontier– {n}) U Successors(Curr)

Frontier= Frontier– {n}
CutOffOccured = TRUE.

}
return FAIL

68

Depth Limited Search Example

69

Iterative Deepening Search
• Solve the problems of depth-first and breadth-first by

extending depth limited search.
• Starting at depth limit L = 0, we iteratively increase the

depth limit, performing a depth limited search for each
depth limit.

• Stop if a solution is found, or if the depth limited search
failed without cutting off any nodes because of the depth
limit.
– If no nodes were cut off, the search examined all

paths in the state space and found no solution  no
solution exists.

70

Iterative Deepening Search

71

Iterative Deepening Search

72

Iterative Deepening Search

73

Iterative Deepening Search

74

Iterative Deepening Search

Completeness?
– YES, if a minimal depth solution of depth d exists.

• What happens when the depth limit L=d?
• What happens when the depth limit L<d?

Time Complexity?

75

Iterative Deepening Search

Time Complexity?
– (d+1)b0 + db1 + (d-1)b2 + … + bd = O(bd)
– E.g. b=4, d=10

• (11)*40 + 10*41 + 9*42 + … + 410 = 1,864,131
• 410 = 1,048,576
• Most nodes lie on bottom layer.

76

BFS can explore more states than
IDS!

 For IDS, the time complexity is
– (d+1)b0 + db1 + (d-1)b2 + … + bd = O(bd)

 For BFS, the time complexity is
– 1 + b + b2 + b3 + … + bd + b(bd – 1) = O(bd+1)

E.g. b=4, d=10

 For IDS
– (11)*40 + 10*41 + 9*42 + … + 410 = 1,864,131 (states generated)

 For BFS
– 1 + 4 + 42 + … + 410 + 4(410 – 1) = 5,592,401 (states generated)
– In fact IDS can be more efficient than breadth first search: nodes at limit are not

expanded. BFS must expand all nodes until it expands a goal node. So a the
bottom layer it will add many nodes to Frontier before finding the goal node.

77

Iterative Deepening Search Properties
Space Complexity?

– O(bd) … still linear!

Optimal?
– Will find shortest length solution which is optimal if costs are

uniform.
– If costs are not uniform, we can use a “cost” bound instead.

• Only expand paths of cost less than the cost bound.
• Keep track of the minimum cost unexpanded path in each

depth first iteration, increase the cost bound to this on the
next iteration.

• This can be more expensive. Need as many iterations of
the search as there are distinct path costs.

78

Path Checking
Recall that paths are commonly stored on the Frontier.
If nk represents the path <s0,s1,…,sk> and we expand sk to
obtain child c, we have

<s0,s1,…,sk,c>
as the path to “c”.

Path checking:

–Ensure that the state c is not equal to the state reached
by any ancestor of c along this path.
–Paths are checked in isolation!

79

Example: Arad to Neamt

80

Path Checking Example

Arad Lugoj

Sibiu

R. Vilcea

Timisoara

Arad

Timisoara Mehadia

Arad

Sibiu Craiova

PitestiDrobetaLugoj

Pitesti

R. Vilcea Drobeta

Fagaras

81

Cycle Checking
– Keep track of all states previously expanded during the

search.
– When we expand nk to obtain child c

• Ensure that c is not equal to any previously expanded
state.

– This is called cycle checking, or multiple path checking.
– What happens when we utilize this technique with depth-

first search?
• What happens to space complexity?

82

Cycle Checking Example (BFS)

Arad Lugoj

Sibiu

R. Vilcea

Timisoara

Arad

Timisoara Mehadia

Arad

Sibiu Craiova

PitestiDrobetaLugoj

Pitesti

R. Vilcea Drobeta

Fagaras

83

Cycle Checking
• Higher space complexity (equal to the space complexity of

breadth-first search).
• Other issues with cycle checking will come up when we look

at heuristic search.

88

Uniform‐Cost Search
• Keeps Frontier ordered by increasing cost of the path (know a

good data structure for this?)
• Always expand the least cost path.
• Identical to Breadth First Search if each action has the same

cost

85 86

87 88

89 90

91 92

93 94

95 96

97 98

99 100

101 102

103

Uniform‐Cost Properties
Optimality?

– YES. Let’s prove this. Note that the arguments we see
here will be used again when we examine heuristic search.

104

Is cycle checking required to guarantee an optimal solution?

Uniform‐Cost Search. Proof of Optimality
Given: each transition has cost ≥ ε > 0.
Lemma 1: Let c(n) be the cost of node n on Frontier (cost of the path to n

represented by c(n)). If n2 is expanded IMMEDIATELY after n1 then
c(n1) ≤ c(n2).

When n1 was expanded the Frontier could have looked one of two ways. What
are these?

105

Uniform‐Cost Search. Proof of Optimality
Given: each transition has cost ≥ ε > 0.
Lemma 1: Let c(n) be the cost of node n on Frontier (cost of the path to n

represented by c(n)). If n2 is expanded IMMEDIATELY after n1 then
c(n1) ≤ c(n2).

Proof of Lemma 1: there are 2 cases:
n2 was on Frontier when n1 was expanded:

We must have c(n1) ≤ c(n2) otherwise n2 would have been selected for

expansion rather than n1

n2 was added to Frontier when n1 was expanded:
Now c(n1) < c(n2) since the path represented by n2 extends the path

represented by n1 and thus costs at least ε more.

106

Uniform‐Cost Search. Proof of Optimality
Lemma 2: When node n is expanded every path in the search space with cost

strictly less than c(n) has already been expanded.

Proof:
• Assume we’ve just expanded n.
• Let n0 = <Start>
• Let nk = <Start, n0, n1, …, nk> be a path with cost less than c(n), i.e.

c(nk) < c(n).
• Let ni be the last node on this path expanded by our search: <Start, n0,

n1, ni-1, ni, ni+1, …, nk>
• So, ni+1 must still be on the frontier. Also c(ni+1) < c(n) since the cost of

the entire path to nk is < c(n).
• But then uniform-cost would have expanded ni+1 not n.
• So every node on this path must already be expanded as it is a lower cost

path, i.e., this path has already been expanded.

107

Uniform‐Cost Search. Proof of Optimality

Lemma 3: The first time uniform-cost expands a node n terminating at state S,
it has found the minimal cost path to S (it might later find other paths to S
but none of them can be cheaper).

Proof:
– All cheaper paths have already been expanded, none of them terminated

at S.
– All paths expanded after n will be at least as expensive, so no cheaper

path to S can be found later.

So, when a path to a goal state is expanded the path must be optimal
(lowest cost).

108

Uniform‐Cost Properties
• Completeness?

– YES. Given positive, nonzero transition costs, the previous
argument used for breadth first search holds: the cost of
the path represented by each node n chosen to be
expanded must be non-decreasing.

109

Uniform‐Cost Properties
Time and Space Complexity?
Assuming each transition cost is ≥ ε > 0.

– O(bC*/ε + 1) where C* is the cost of the optimal solution and ε
the minimal cost of transitions.

– Paths with cost lower than C* can be as long as C*/ε (why
not longer?)

– There may be many paths with cost ≤ C*; Uniform Cost
Search must explore them all.

– We may have bC*/ε paths to explore and expand before
finding the optimal cost path.

110

	Blank Page

