CSC384
 Knowledge Representation Part 2

Bahar Aameri \& Sonya Allin

Winter 2020

Credits

These slides are drawn from or inspired by a multitude of sources including :

Yongmei Liu
Faheim Bacchus
Michael Winter
Hector Levesque

Let Φ be a set of sentences and A be a sentence.
A is a logical consequence of Φ (denoted by $\Phi \models A$) if for every structure \mathcal{M}, if $\mathcal{M} \models \Phi$ then $\mathcal{M} \models A$.

If A is a logical consequence of Φ, then there is no \mathcal{M} such that $\mathcal{M} \models \Phi \cup\{\neg A\}$. In other words, $\Phi \cup\{\neg A\}$ is unsatisfiable.

Example:

Assume Φ includes the following sentences:
$\forall x \forall y \forall z[(\operatorname{above}(z, y) \wedge \operatorname{above}(y, x)) \rightarrow \operatorname{above}(z, x)]$ $\operatorname{above}\left(\boldsymbol{c}_{1}, \boldsymbol{c}_{\mathbf{2}}\right) \wedge \operatorname{above}\left(\boldsymbol{c}_{2}, \boldsymbol{c}_{\mathbf{3}}\right)$

$$
\Phi \vDash \text { above }\left(c_{1}, c_{2}\right)
$$

Knowledge-based Systems

Knowledge Base (KB): A collection of sentences that represents what the agent/program believes about the world.

Sentences in the KB are explicit knowledge of the agent.
Logical consequences of the KB are implicit knowledge of the agent.

Example: Suppose KB includes the following sentences:

- The capital of Canada is Ottawa
- The largest province in Canada is Quebec
- The provinces neighbouring Quebec are Ontario, New Brunswick, and Newfoundland

Implicit knowledge of the KB:

Ontario, New Brunswick and Newfoundland are the neighbouring provinces of the largest province in Canada.

- To computing implicit knowledge of the KB (i.e., logical consequences) we need a mechanical procedure that can be implemented as an algorithm.
- This would allow us to reason with our knowledge:
- Represent the knowledge as logical formulas.
- Apply the procedure for generating logical consequences
- Mechanical proof procedures work by manipulating formulas. They do not know or care anything about interpretations. Nevertheless they respect the semantics of interpretations!

A proof procedure is sound if whenever it produces a sentence A by manipulating sentences in a KB , then A is a logical consequence of KB (i.e., $K B \models A$).
That is, all conclusions arrived at via the proof procedure are correct: they are logical consequences.

A proof procedure is complete if it can produce all logical consequences of $K B$.
That is, if $K B \models A$, then the procedure can produce A.

We will develop a sound and complete proof procedure for first-order logic called Resolution.

Resolution works with formulas expressed in clausal form.

A literal is an atomic formula or the negation of an atomic formula.
Example: $\operatorname{dog}($ fido $), \neg c a t($ fido $), P(x), \neg Q(y)$

A clause is a disjunction of literals:
Example:
$P(x) \vee \neg Q(x, y)$
\neg owns $($ fido, $\boldsymbol{f r e d}) \vee \neg \operatorname{dog}(\boldsymbol{f i d o}) \vee \operatorname{person}(\boldsymbol{f r e d})$

A clausal theory is a conjunction of clauses.
Example:
$(P(x) \vee \neg Q(x, y)) \wedge$
$(\neg$ owns $($ fido, fred $) \vee \neg \operatorname{dog}($ fido $) \vee$ person $($ fred $))$

Resolution

The resolution proof procedure uses only one inference rule:

We denote a contradiction by an empty clause: ()

Resolution by Refutation:

- Assume $\neg A$ is true to generate a contradiction. (Refutation)
- Convert $\neg A$ and all sentences in KB to a clausal theory C.
- Resolve the clauses in C until an empty clause is obtained.

Resolution by Refutation: Example

Want to prove likes(clyde,peanuts) from:

1. elephant $($ clyde $) \vee$ giraffe(clyde)
2. ᄀelephant(clyde) \vee likes(clyde, peanuts)
3. \neg giraffe (clyde) \vee likes (clyde, leaves)
4. \neg likes(clyde,leaves)

Assume: 5. \neg likes(clyde, peanuts)

Resolution by Refutation: Example
Want to prove likes(clyde,peanuts) from:

1. elephant $($ clyde $) \vee$ giraffe $($ clyde $)$
2. $\neg e l e p h a n t($ clyde $) \vee$ likes(clyde, peanuts)
3. \neg giraf fe(clyde) \vee likes(clyde,leaves)
4. \neg likes(clyde,leaves)

Resolution by Refutation Proof:

- \neg likes(clyde, peanuts)[5.]
- 5\&2: ᄀelephant(clyde)[6.]
- 6\&1: giraffe(clyde)[7.]
- 7\&3: likes(clyde,leaves)[8.]
- 8\&4: ()

To develop a complete resolution proof procedure for first-order logic we need :

1. A way of converting KB and A into clausal form.
2. A way of doing resolution even when we have variables (unification).
3. Eliminate Implications.
4. Move Negations Inwards (and simplify $\neg \neg$).
5. Standardize Variables.
6. Skolemization.
7. Convert to Prenix Form.
8. Distribute Conjunctions over Disjunctions.
9. Flatten nested Conjunctions and Disjunctions.
10. Convert to Clauses.

Eliminate Implications

Implication Rule: $A \rightarrow B$ iff $\quad \neg A \vee B$
$\forall x[P(x) \rightarrow((\forall y[P(y) \rightarrow P(f(x, y))]) \wedge \neg(\forall y[\neg q(x, y) \wedge P(y)]))]$

Eliminate Implication: $\forall x[\neg P(x) \vee((\forall y[\neg P(y) \vee P(f(x, y))]) \wedge \neg(\forall y[\neg q(x, y) \wedge P(y)]))]$

- $\neg \neg A$ iff A
- $\neg(A \wedge B) \quad$ iff $\quad \neg A \vee \neg B$
- $\neg(A \vee B) \quad$ iff $\quad \neg A \wedge \neg B$
- $\neg \forall x A$ iff $\exists x \neg A$
- $\neg \exists x A$ iff $\quad \forall x \neg A$

Simplify and Move Negations Inwards

$\forall x[\neg P(x) \vee((\forall y[\neg P(y) \vee P(f(x, y))]) \wedge \neg(\forall y[\neg Q(x, y) \wedge P(y)]))]$

Move Negations Inwards:

$\forall x[\neg P(x) \vee((\forall y[\neg P(y) \vee P(f(x, y))]) \wedge(\exists y[\neg \neg Q(x, y) \vee \neg P(y)]))]$

Simplify Negations:

$\forall x[\neg P(x) \vee((\forall y[\neg P(y) \vee P(f(x, y))]) \wedge(\exists y[Q(x, y) \vee \neg P(y)]))]$

Standardize Variables

Standardize Variables: Rename variables so that each quantified variable is unique.

$$
\begin{aligned}
& \forall x[\neg P(x) \vee((\forall y[\neg P(y) \vee P(f(x, y))]) \wedge(\exists y[Q(x, y) \vee \neg P(y)]))] \\
& \forall x[\neg P(x) \vee((\forall y[\neg P(y) \vee P(f(x, y))]) \wedge(\exists z[Q(x, z) \vee \neg P(z)]))]
\end{aligned}
$$

Skolemization

Skolemization: Remove existential quantifiers by introducing new function symbols.
$\forall x[\neg P(x) \vee((\forall y[\neg P(y) \vee P(f(x, y))]) \wedge(\exists z[Q(x, z) \vee \neg P(z)]))]$

- Consider $\exists y(e l e p h a n t(y) \wedge$ friendly (y)
- This asserts that there is some individual (binding for y) that is both an elephant and friendly.
- To remove the existential, we invent a "name" for this individual a. This "name" must be a new constant symbol (not equal to any previous constant symbols in the vocabulary of the KB):

$$
\text { elephant }(\boldsymbol{a}) \wedge \text { friendly }(\boldsymbol{a})
$$

Skolemization

- Consider $\exists y($ elephant $(y) \wedge$ friendly (y)
- This asserts that there is some individual (binding for y) that is both an elephant and friendly.
- To remove the existential, we invent a "name" for this individual a.

This "name" must be a new constant symbol (not equal to any previous constant symbols in the vocabulary of the KB):

$$
\text { elephant }(\boldsymbol{a}) \wedge \text { friendly }(\boldsymbol{a})
$$

- The new sentence says the same thing, since we do not know anything about \boldsymbol{a}.
- IMPORTANT: The introduced symbol must be \boldsymbol{a} is new.

Else we might know something else about \boldsymbol{a} in KB.

- If we did know something else about \boldsymbol{a} we would be asserting more than the existential.
- In original quantified formula we know nothing about the variable y. Just what was being asserted by the existential formula.
- Now consider

$$
\forall x \exists y(\operatorname{loves}(x, y))
$$

This formula states that for every x there is some y that x loves (possibly a different y for each x).

- Replacing the existential by a new constant won't work

$$
\forall x(\operatorname{loves}(x, \boldsymbol{a}))
$$

This asserts that there is a particular individual \boldsymbol{a} loved by every x.

Skolemization

- Now Consider

$$
\forall x \exists y(\operatorname{loves}(x, y))
$$

This formula states that for every x there is some y that x loves (possibly a different y for each x).

- Replacing the existential by a new constant won't work

$$
\forall x(\text { loves }(x, \boldsymbol{a}))
$$

This asserts that there is a particular individual \boldsymbol{a} loved by every x.

- To properly convert existential quantifiers scoped by universal quantifiers we must use functions:
- Use a new function symbol that mentions every universally quantified variable that scopes the existential.

$$
\forall x(\operatorname{loves}(x, g(x))
$$

where g is a new function symbol.
This formula asserts that for every x there is some individual (denoted by $g(x)$) that x loves.

```
\forallx\forally\forallz\existsw(R(x,y,z,w))
    \forallx\forallj\forallZ (R(x,-y,z, g}(x,y,z))
```

$\forall x \forall y \exists w(R(x, y, w))$
$\forall x \forall y\left(R\left(x, y, g_{2}(x, y)\right)\right)$
$\forall x \forall y \exists w \forall z(R(x, y, w) \wedge Q(z, w))$

$$
\forall x \forall y \forall 2\left(R\left(x, y, g_{3}(x, y)\right) \wedge Q\left(2, g_{3}(x, y)\right)\right)
$$

Skolemization

Skolemization: Remove existential quantifiers by introducing new function symbols.

$$
\begin{aligned}
& \forall x[\neg P(x) \vee((\forall y[\neg P(y) \vee P(f(x, y))]) \wedge(\exists z[Q(x, z) \vee \neg P(z)]))] \\
& \forall x[\neg P(x) \vee((\forall y[\neg P(y) \vee P(f(x, y))]) \wedge(Q(x, g(x)) \vee \neg P(g(x))))]
\end{aligned}
$$

Convert to Prenix Form: Bring all quantifiers to the front.

$$
\begin{aligned}
& \forall x[\neg P(x) \vee((\forall y[\neg P(y) \vee P(f(x, y))]) \wedge(Q(x, g(x)) \vee \neg P(g(x))))] \\
& \forall x \forall y[\neg P(x) \vee((\neg P(y) \vee P(f(x, y))) \wedge(Q(x, g(x)) \vee \neg P(g(x))))]
\end{aligned}
$$

Distribute Conjunctions over Disjunctions

Conjunctions over Disjunctions: $\quad A \vee(B \wedge C) \quad$ iff $\quad(A \vee B) \wedge(A \vee C)$

$\forall x \forall y[\neg P(x) \vee((\neg P(y) \vee P(f(x, y))) \wedge(Q(x, g(x)) \vee \neg P(g(x))))]$
$\forall x \forall y[(\neg P(x) \vee(\neg P(y) \vee P(f(x, y)))) \wedge(\neg P(x) \vee(Q(x, g(x)) \vee \neg P(g(x))))]$

Flatten nested Conjunctions and Disjunctions

Flatten nested \wedge and \vee :

- $A \vee(B \vee C)$ to $(A \vee B \vee C)$
- $A \wedge(B \wedge C)$ to $\quad(A \wedge B \wedge C)$
$\forall x \forall y[(\neg P(x) \vee(\neg P(y) \vee P(f(x, y)))) \wedge(\neg P(x) \vee(Q(x, g(x)) \vee \neg P(g(x))))]$
$\forall x \forall y[(\neg P(x) \vee \neg P(y) \vee P(f(x, y))) \wedge(\neg P(x) \vee Q(x, g(x)) \vee \neg P(g(x)))]$

Convert to Clauses: Remove universal quantifiers and break apart conjunctions

$$
\forall x \forall y[(\neg P(x) \vee \neg P(y) \vee P(f(x, y))) \wedge(\neg P(x) \vee Q(x, g(x)) \vee \neg P(g(x)))]
$$

- $\neg P(x) \vee \neg P(y) \vee P(f(x, y))$
- $\neg P(x) \vee Q(x, g(x)) \vee \neg P(g(x))$
- If clauses have no variables syntactic identity can be used to detect if a P and $\neg P$ exists.
- What about variables? Can the following clauses be resolved?
($P($ john $), Q($ fred $), R(x))$
$(\neg P(y), R($ susan $), R(y))$
- Once reduced to clausal form, all remaining variables are universally quantified. So, implicitly ($\neg P(y), R($ susan $), R(y))$ represents a whole set of clauses like $(\neg P($ fred $), R($ susan $), R($ fred $))$
$(\neg P($ john $), R($ susan $), R($ john $))$
- So there is a specialization of this clause that can be resolved with ($P($ john $), Q($ fred $), R(x))$
- In particular
$(P($ john $), Q($ fred $), R(\boldsymbol{j o h n}))$ and $(\neg P($ john $), R($ susan $), R(\boldsymbol{j o h n}))$
can can be resolved, producing ($Q($ fred $), R($ john $), R($ susan $))$

Unification

- We want to be able to match conflicting literals, even when they have variables.
- The matching process automatically determines whether or not there is a specializaion that matches.
- But, We don't want to over specialize!
- $(\neg P(x), S(x), Q($ fred $))$
- $(P(y), R(y))$

Possible resolvents:
1- (S (john), $Q($ fred $), R($ john $))\{y=x, x=$ john $\}$
$2 .\left(S(\right.$ sally $), Q(f$ red $\left.), R\left(S_{\text {all }}-j\right)\right)\{y=x, x=$ san $y\}$
3- $(s(x), Q(f r e d), R(x)) \quad\{y=x\}$

- The last resolvant is most-general, the other two are specializations of it. We want to keep the most general clause so that we can use it future resolution steps.
- Unification is a mechanism for finding the most general matching.
- A key component of unification is substitution.

A substitution is a finite set of equations of the form $V=t$ where V is a variable and t is a term not containing V (t might contain other variables).

- We can apply a substitution $\delta=\left\{V_{1}=t_{1}, \ldots, V_{n}=t_{n}\right\}$ to a formula A to obtain a new formula $A \delta$ by simultaneously replacing every variable V_{i} by term t_{i}.

Example: Applying $\delta=\{x=y, y=f(a)\}$ to $P(x, g(y, z))$

$$
P(\underset{\uparrow}{x}, g(\underset{\uparrow}{y}, z)) \delta=P(y, g(f(a), z))
$$

Note that the substitutions are NOT applied sequentially, i.e., the first y is not subsequently replaced by $f(a)$.

Composition of Substitutions

- We can compose two substitutions θ and δ to obtain a new substitution $\theta \delta$.
- Composition is a way of converting the sequential application of a series of substitutrons to a single simultaneous substitution.
$\theta=\left\{x_{1}=s_{1}, x_{2}=s_{2}, \ldots, x_{m}=s_{m}\right\}$
$\delta=\left\{y_{1}=t_{1}, y_{2}=t_{2}, \ldots, y_{k}=t_{k}\right\}$
To compute $\theta \delta$:

1. Apply δ to each RHS of θ and then add all of the equations of δ :

$$
\theta \delta=\left\{x_{1}=s_{1} \delta, x_{2}=s_{2} \delta, \ldots, x_{m}=s_{m} \delta, y_{1}=t_{1}, y_{2}=t_{2}, \ldots, y_{k}=t_{k}\right\}
$$

2. Delete any identities, i.e., equations of the form $V=V$ from $\theta \delta$.
3. Delete any equation $y_{i}=s_{i}$ where y_{i} is equal to one of the x_{j} in θ_{j}

Example: $\theta=\{x=f(\underline{y}), y=\underline{z}\}, \delta=\{x=a, y=b, z=\underline{y}\}$

$$
\theta \delta=\left\{x=f(b), \frac{y=y}{x}, \frac{x=a}{x}, \frac{y=a}{x}, z=j\right\}
$$

$$
\theta \delta=\{x=f(b), z=y\}
$$

Composition of Substitutions

- The empty substitution $\epsilon=\{ \}$ is also a substitution, and it acts as an identity under composition.
- Substitutions when applied to formulas are associative:

$$
(f \theta) \delta=f(\theta \delta)
$$

Unifiers

A unifier of two formulas f and g is a substitution δ that makes f and g syntactically identical.

Not all formulas can be unified since substitutions only affect variables.

Example:

$$
P(f(x), \boldsymbol{a}) \quad P(y, f(w))
$$

This pair cannot be unified as there is no way of making $\boldsymbol{a}=f(w)$ with a substitution.

Most General Unifier (MGU)

A substitution δ of two formulas f and g is a Most General Unifier (MGU) if:

1. δ is a unifier.
2. For every other unifier θ of f and g there exist a third substitution λ such that

$$
\theta=\delta \lambda
$$

That is, every other unifier is more specialized than δ.
The MGU of a pair of formulas f and g is unique up to renaming.

The MGU is the "least specialized" way of making clauses with universal variables match.

MGU: Example

$$
P(f(x), z) \quad P(y, \boldsymbol{a})
$$

$\delta=\{y=f(\boldsymbol{a}), x=\boldsymbol{a}, z=\boldsymbol{a}\}$ is a unifier. But it is not an MGU.

$$
\begin{aligned}
& P(f(x), z) \delta=P(f(a), a) \\
& P(y, a) \delta=P(f(a), a)
\end{aligned}
$$

$\theta=\{y=f(x), z=\boldsymbol{a}\}$ is an MGU.

$$
\begin{aligned}
& P(f(x), z) \theta=P(f(x), a) \\
& P(y, a) \theta=P(f(x), a)
\end{aligned}
$$

$\delta=\theta \lambda$, where $\lambda=\{x=\boldsymbol{a}\}$

Computing MGUs: Intuition

- We line up the two formulas and find the first sub-expression where they disagree.
- The pair of sub-expressions where they first disagree is called the disagreement set.
- The algorithm works by successively fixing disagreement sets until the two formulas become syntactically identical.

To find the MGU of two formulas f and g.

1. $k=0 ; \quad \delta_{0}=\{ \} ; \quad S_{0}=\{f, g\}$.
2. REPEAT UNTIL no more disagreement:
3. Find disagreement set $D_{k}=\left\{e_{1}, e_{2}\right\}$.
4. IF $e_{1}=V$, where V is a variable, and $e_{2}=t$, where t is a term not containing V, or vice-versa then:

- $\delta_{k+1}=\delta_{k}\{V=t\}$ \# Compose the additional substitution
- $S_{k+1}=S_{k}\{V=t\}$ \# Apply the additional substitution
- $k=k+1$

5. ELSE unification is not possible.

MGU - Example 1

Find the MGU of $P(f(\boldsymbol{a}), g(x))$ and $P(y, y)$:

- $\delta_{0}=\{ \} ; S_{0}=\{P(f(\boldsymbol{a}), g(x)), P(y, y)\}$

MGU - Example 1

Find the MGU of $P(f(\boldsymbol{a}), g(x))$ and $P(y, y)$:

- $\delta_{0}=\{ \} ; S_{0}=\{P(f(\boldsymbol{a}), g(x)), P(y, y)\}$
- $D_{0}=\{f(\boldsymbol{a}), y\}$

MGU - Example 1

Find the MGU of $P(f(\boldsymbol{a}), g(x))$ and $P(y, y)$:

- $\delta_{0}=\{ \} ; S_{0}=\{P(f(\boldsymbol{a}), g(x)), P(y, y)\}$
- $D_{0}=\{f(\boldsymbol{a}), y\}$
- $\delta_{1}=\{y=f(\boldsymbol{a})\} ; S_{1}=\{P(f(\boldsymbol{a}), g(x)), P(f(\boldsymbol{a}), f(\boldsymbol{a}))\}$

MGU - Example 1

Find the MGU of $P(f(\boldsymbol{a}), g(x))$ and $P(y, y)$:

- $\delta_{0}=\{ \} ; S_{0}=\{P(f(\boldsymbol{a}), g(x)), P(y, y)\}$
- $D_{0}=\{f(\boldsymbol{a}), y\}$
- $\delta_{1}=\{y=f(\boldsymbol{a})\} ; S_{1}=\{P(f(\boldsymbol{a}), g(x)), P(f(\boldsymbol{a}), f(\boldsymbol{a}))\}$
- $D_{1}=\{g(x), f(\boldsymbol{a})\}$

MGU - Example 1

Find the MGU of $P(f(\boldsymbol{a}), g(x))$ and $P(y, y)$:

- $\delta_{0}=\{ \} ; S_{0}=\{P(f(\boldsymbol{a}), g(x)), P(y, y)\}$
- $D_{0}=\{f(\boldsymbol{a}), y\}$
- $\delta_{1}=\{y=f(\boldsymbol{a})\} ; S_{1}=\{P(f(\boldsymbol{a}), g(x)), P(f(\boldsymbol{a}), f(\boldsymbol{a}))\}$
- $D_{1}=\{g(x), f(\boldsymbol{a})\}$
- no unification possible!

MGU - Example 2

$$
\text { - } \delta_{0}=\{ \} ; \quad S_{0}=\{P(\boldsymbol{a}, x, h(g(z))), P(z, h(y), h(y))\}
$$

MGU - Example 2

- $\delta_{0}=\{ \} ; \quad S_{0}=\{P(a, x, h(g(z))), P(z, h(y), h(y))\}$
- $D_{0}=\{\boldsymbol{a}, z\}$

MGU - Example 2

- $\delta_{0}=\{ \} ; \quad S_{0}=\{P(\boldsymbol{a}, x, h(g(z))), P(z, h(y), h(y))\}$
- $D_{0}=\{\boldsymbol{a}, z\}$
- $\delta_{1}=\{z=\boldsymbol{a}\} ; \quad S_{1}=\{P(\boldsymbol{a}, x, h(g(\boldsymbol{a}))), P(\boldsymbol{a}, h(y), h(y))\}$

MGU - Example 2

- $\delta_{0}=\{ \} ; \quad S_{0}=\{P(\boldsymbol{a}, x, h(g(z))), P(z, h(y), h(y))\}$
- $D_{0}=\{\boldsymbol{a}, z\}$
- $\delta_{1}=\{z=\boldsymbol{a}\} ; \quad S_{1}=\{P(\boldsymbol{a}, x, h(g(\boldsymbol{a}))), P(\boldsymbol{a}, h(y), h(y))\}$
- $D_{1}=\{x, h(y)\}$

MGU - Example 2

- $\delta_{0}=\{ \} ; \quad S_{0}=\{P(\boldsymbol{a}, x, h(g(z))), P(z, h(y), h(y))\}$
- $D_{0}=\{\boldsymbol{a}, z\}$
- $\delta_{1}=\{z=\boldsymbol{a}\} ; \quad S_{1}=\{P(\boldsymbol{a}, x, h(g(\boldsymbol{a}))), P(\boldsymbol{a}, h(y), h(y))\}$
- $D_{1}=\{x, h(y)\}$
- $\delta_{2}=\{z=\boldsymbol{a}, x=h(y)\} ;$
$S_{2}=\{P(\boldsymbol{a}, h(y), h(g(\boldsymbol{a}))) ; P(\boldsymbol{a}, h(y), h(y))\}$

MGU - Example 2

- $\delta_{0}=\{ \} ; \quad S_{0}=\{P(\boldsymbol{a}, x, h(g(z))), P(z, h(y), h(y))\}$
- $D_{0}=\{\boldsymbol{a}, z\}$
- $\delta_{1}=\{z=\boldsymbol{a}\} ; \quad S_{1}=\{P(\boldsymbol{a}, x, h(g(\boldsymbol{a}))), P(\boldsymbol{a}, h(y), h(y))\}$
- $D_{1}=\{x, h(y)\}$
- $\delta_{2}=\{z=\boldsymbol{a}, x=h(y)\} ;$
$S_{2}=\{P(\boldsymbol{a}, h(y), h(g(\boldsymbol{a}))) ; P(\boldsymbol{a}, h(y), h(y))\}$
- $D_{2}=\{g(\boldsymbol{a}), y\}$

MGU - Example 2

- $\delta_{0}=\{ \} ; \quad S_{0}=\{P(\boldsymbol{a}, x, h(g(z))), P(z, h(y), h(y))\}$
- $D_{0}=\{\boldsymbol{a}, z\}$
- $\delta_{1}=\{z=\boldsymbol{a}\} ; \quad S_{1}=\{P(\boldsymbol{a}, x, h(g(\boldsymbol{a}))), P(\boldsymbol{a}, h(y), h(y))\}$
- $D_{1}=\{x, h(y)\}$
- $\delta_{2}=\{z=\boldsymbol{a}, x=h(y)\} ;$

$$
S_{2}=\{P(\boldsymbol{a}, h(y), h(g(\boldsymbol{a}))) ; P(\boldsymbol{a}, h(y), h(y))\}
$$

- $D_{2}=\{g(\boldsymbol{a}), y\}$
- $\delta_{3}=\{z=\boldsymbol{a}, x=h(y)\}\{y=g(\boldsymbol{a})\}$

$$
=\{z=\boldsymbol{a}, x=h(g(\boldsymbol{a})), y=g(\boldsymbol{a})\}
$$

$$
S_{3}=\{P(\boldsymbol{a}, h(g(\boldsymbol{a})), h(g(\boldsymbol{a}))) ; P(\boldsymbol{a}, h(g(\boldsymbol{a})), h(g(\boldsymbol{a})))\}
$$

MGU - Example 2

- $\delta_{0}=\{ \} ; \quad S_{0}=\{P(\boldsymbol{a}, x, h(g(z))), P(z, h(y), h(y))\}$
- $D_{0}=\{\boldsymbol{a}, z\}$
- $\delta_{1}=\{z=\boldsymbol{a}\} ; \quad S_{1}=\{P(\boldsymbol{a}, x, h(g(\boldsymbol{a}))), P(\boldsymbol{a}, h(y), h(y))\}$
- $D_{1}=\{x, h(y)\}$
- $\delta_{2}=\{z=\boldsymbol{a}, x=h(y)\} ;$
$S_{2}=\{P(\boldsymbol{a}, h(y), h(g(\boldsymbol{a}))) ; P(\boldsymbol{a}, h(y), h(y))\}$
- $D_{2}=\{g(\boldsymbol{a}), y\}$
- $\delta_{3}=\{z=\boldsymbol{a}, x=h(y)\}\{y=g(\boldsymbol{a})\}$

$$
=\{z=\boldsymbol{a}, x=h(g(\boldsymbol{a})), y=g(\boldsymbol{a})\}
$$

$S_{3}=\{P(\boldsymbol{a}, h(g(\boldsymbol{a})), h(g(\boldsymbol{a}))) ; P(\boldsymbol{a}, h(g(\boldsymbol{a})), h(g(\boldsymbol{a})))\}$

- No disagreement
$\Rightarrow \delta=\{z=\boldsymbol{a}, x=h(g(\boldsymbol{a})), y=g(\boldsymbol{a})\}$ is MGU

MGU - Example 3

- $S_{0}=\{P(x, x), P(y, f(y))\}$

MGU - Example 3

- $S_{0}=\{P(x, x), P(y, f(y))\}$
- $D_{0}=\{x, y\}$

MGU - Example 3

- $S_{0}=\{P(x, x), P(y, f(y))\}$
- $D_{0}=\{x, y\}$
- $\delta_{1}=\{x=y\}, S_{1}=\{P(y, y), P(y, f(y))\}$

MGU - Example 3

- $S_{0}=\{P(x, x), P(y, f(y))\}$
- $D_{0}=\{x, y\}$
- $\delta_{1}=\{x=y\}, S_{1}=\{P(y, y), P(y, f(y))\}$
- $D_{1}=\{y, f(y)\}$

MGU - Example 3

- $S_{0}=\{P(x, x), P(y, f(y))\}$
- $D_{0}=\{x, y\}$
- $\delta_{1}=\{x=y\}, S_{1}=\{P(y, y), P(y, f(y))\}$
- $D_{1}=\{y, f(y)\}$
- no unification possible!

Consider two clauses:
$\left(L, Q_{1}, Q_{2}, \ldots, Q_{k}\right)$
$\left(\neg M, R_{1}, R_{2}, \ldots, R_{n}\right)$

$\angle \delta=M \delta$

where there exists an MGU δ for L and M.

We apply δ to both clauses, resolve $L \delta$ and $\neg M \delta$, and infer the new clause $\left(Q_{1} \delta, Q_{2} \delta, \ldots, Q_{k} \delta, R_{1} \delta, R_{2} \delta, \ldots, R_{n} \delta\right)$

Resolution of Clauses with Variables: Example

$$
\begin{aligned}
& (P(x), Q(g(x))) \\
& (R(a), Q(z), \neg P(a)) \\
& L=P(x), M=P(a) \quad P(x) \delta=P(a) \\
& \delta=\{x=\boldsymbol{a}\} \\
& R[1 a, 2 c]\{x=a\}(Q(g(a)), R(a), Q(z)) \quad
\end{aligned}
$$

```
\((P(x), Q(g(x)))\)
\((R(\boldsymbol{a}), Q(z), \neg P(\boldsymbol{a}))\)
\(L=P(x), M=P(\boldsymbol{a})\)
\(\delta=\{x=\boldsymbol{a}\}\)
\(R[1 a, 2 c]\{x=\boldsymbol{a}\}(Q(g(\boldsymbol{a})), R(\boldsymbol{a}), Q(z))\)
```

The notation is important. You will need to use this notation on the exam!

- R: resolution step.
- 1a: the first (a-th) literal in the first clause; i.e. $P(x)$.
- 2c: the third (c-th) literal in the second clause; i.e., $\neg P(\boldsymbol{a})$.
- 1 a and 2 c are the clashing literals.
- $\{x=a\}$: the substitution applied to make the clashing literals identical.

Some patients like all doctors.
No patient likes any quack.
Prove: No doctor is a quack.

Step 1: Pick a vocabulary for representing these assertions.

Resolution Proof: Example

Some patients like all doctors.
No patient likes any quack.
Prove: No doctor is a quack.
Step 1: Pick a vocabulary for representing these assertions.

$$
\begin{aligned}
& P(x): x \text { is a patient. } \\
& D(x): x \text { is a doctor. } \\
& Q(x): x \text { is a quack. } \\
& L(x, y): x \text { likes } y .
\end{aligned}
$$

Some patients like all doctors.
No patient likes any quack.
Prove: No doctor is a quack.

Step 2: Convert each assertion to a first-order formula.

Resolution Proof: Example

Some patients like all doctors.
No patient likes any quack.
Prove: No doctor is a quack.
Step 2: Convert each assertion to a first-order formula.

$$
\left.F_{1}: \exists x[P(x) \wedge \forall y[D(y) \rightarrow L(x, y))]\right]
$$

Resolution Proof: Example

Some patients like all doctors.
No patient likes any quack.
Prove: No doctor is a quack.
Step 2: Convert each assertion to a first-order formula.
$\left.F_{1}: \exists x[P(x) \wedge \forall y[D(y) \rightarrow L(x, y))]\right]$
$F_{2}: \forall x \forall y[(P(x) \wedge Q(y)) \rightarrow \neg L(x, y)]$

Resolution Proof: Example

Some patients like all doctors.
No patient likes any quack.
Prove: No doctor is a quack.
Step 2: Convert each assertion to a first-order formula.

$$
\begin{aligned}
& \left.F_{1}: \exists x[P(x) \wedge \forall y[D(y) \rightarrow L(x, y))]\right] \\
& F_{2}: \forall x \forall y[(P(x) \wedge Q(y)) \rightarrow \neg L(x, y)]
\end{aligned}
$$

Query: $\forall x[D(x) \rightarrow \neg Q(x)]$

Step 3: Convert to Clausal form.

$$
\begin{aligned}
& F_{1}: \exists x[P(x) \wedge \forall y[(x) \geq L(x, y))] \\
& \exists x[P(x) \wedge \forall y[\neg D(x) \vee L(x, y)]] \\
& P(a) \wedge \forall y[\neg D(a) \vee L(a, y)] \# \text { Skolemization } \\
& \forall y[\underbrace{P(a)}_{(1)} \wedge \underbrace{(7 D(a) \vee L(a, y))}_{(2)}
\end{aligned}
$$

1. $P(a)$
2. $(7 D(a) \cup L(a, y))$
$F_{2}: \forall x \forall y[(P(x) \wedge Q(y)) \rightarrow \neg L(x, y)]$

$$
\begin{aligned}
& \forall x \forall y[\neg(P(x) \wedge Q(y)) \vee \neg L(x, y)] \\
& \forall x \forall y[\neg P(x) \vee \neg Q(y) \vee \neg L(x, y)] \\
& 3 . \neg p(x) \vee \neg Q(y) \vee \neg L(x, y)
\end{aligned}
$$

Negation of Query:

$$
\begin{aligned}
& \exists x \neg[\neg D(x) \vee \neg Q(x)] \\
& \exists x[D(x) \wedge Q(x)]
\end{aligned}
$$

(4) $D(b) \wedge Q(b)$: 1 skolemization

Resolution Proof: Example

Step 4: Resolution Proof from the Clauses.

1. $P(\boldsymbol{a})$
2. $(\neg D(y), L(\boldsymbol{a}, y))$
3. $(\neg P(x), \neg Q(y), \neg L(x, y))$
4. $D(b)$
5. $Q(b)$

Resolution Proof: Example

Step 4: Resolution Proof from the Clauses.

1. $P(\boldsymbol{a})$
2. $(\neg D(y), L(\boldsymbol{a}, y))$
3. $(\neg P(x), \neg Q(y), \neg L(x, y))$
4. $D(\boldsymbol{b})$
5. $Q(b)$
6. $R[3 b, 5]\{y=\boldsymbol{b}\} \quad(\neg P(x), \neg L(x, \boldsymbol{b}))$

Resolution Proof: Example

Step 4: Resolution Proof from the Clauses.

1. $P(\boldsymbol{a})$
2. $(\neg D(y), L(\boldsymbol{a}, y))$
3. $(\neg P(x), \neg Q(y), \neg L(x, y))$
4. $D(b)$
5. $Q(\boldsymbol{b})$
6. $R[3 b, 5]\{y=\boldsymbol{b}\} \quad(\neg P(x), \neg L(x, \boldsymbol{b}))$
7. $R[6 a, 1]\{x=\boldsymbol{a}\} \quad \neg L(\boldsymbol{a}, \boldsymbol{b})$

Resolution Proof: Example

Step 4: Resolution Proof from the Clauses.

1. $P(\boldsymbol{a})$
2. $(\neg D(y), L(\boldsymbol{a}, y))$
3. $(\neg P(x), \neg Q(y), \neg L(x, y))$
4. $D(\boldsymbol{b})$
5. $Q(\boldsymbol{b})$
6. $R[3 b, 5]\{y=\boldsymbol{b}\} \quad(\neg P(x), \neg L(x, \boldsymbol{b}))$
7. $R[6 a, 1]\{x=\boldsymbol{a}\} \quad \neg L(\boldsymbol{a}, \boldsymbol{b})$
8. $R[7,2 b]\{y=\boldsymbol{b}\} \quad \neg D(\boldsymbol{b})$

Resolution Proof: Example

Step 4: Resolution Proof from the Clauses.

1. $P(\boldsymbol{a})$
2. $(\neg D(y), L(\boldsymbol{a}, y))$
3. $(\neg P(x), \neg Q(y), \neg L(x, y))$
4. $D(\boldsymbol{b})$
5. $Q(\boldsymbol{b})$
6. $R[3 b, 5]\{y=\boldsymbol{b}\} \quad(\neg P(x), \neg L(x, \boldsymbol{b}))$
7. $R[6 a, 1]\{x=\boldsymbol{a}\} \quad \neg L(\boldsymbol{a}, \boldsymbol{b})$
8. $R[7,2 b]\{y=\boldsymbol{b}\} \quad \neg D(\boldsymbol{b})$
9. $R[8,4]()$

Answer Extraction

- The previous example shows how we can answer Yes-No questions.
- With a bit more effort we can also answer "fill-in-the-blanks" questions:
- Use free variables in the query where we want the fill in the blanks.
- Keep track of the binding that these variables received in proving the query. parent $(\boldsymbol{a r t}, \boldsymbol{j o n})$ - is art one of jon's parents? parent $(x$, jon $)-$ who is one of jon's parents?
- A simple bookkeeping device is to use a predicate symbol answer (x, y, \ldots) to keep track of the bindings automatically.
Example: To answer parent $(x$, jon $)$, construct the clause:

$$
(\neg \operatorname{parent}(x, \text { jon }), \operatorname{answer}(x))
$$

Then perform resolution until obtain a clause consisting of only answer literals (previously we stopped at empty clauses).

Answer Extraction: Example 1

1. father (art, jon)
2. father(bob, kim)
3. (\neg father $(y, z), \operatorname{parent}(y, z))$ (all fathers are parents)
4. (\neg parent $(x, \boldsymbol{j} \boldsymbol{j o n})$, answer $(x))$ (who is parent of jon?)
5. father(art, jon)
6. father(bob, kim)
7. (\neg father (y, z), parent (y, z)) (all fathers are parents)
8. ($\neg \operatorname{parent}(x$, jon $)$, answer $(x))$ (who is parent of jon?)
9. $R[4,3 b]\{y=x, z=$ jon $\} \quad(\neg$ father $(x$, jon $)$, answer $(x))$
10. $R[5,1]\{x=\boldsymbol{a r t}\} \quad$ answer $(\boldsymbol{a r t})$

Answer the following query (Sentence 4) using the information provided by Sentences 1-3.

1. Either bob or art is father of jon.
2. bob is father of kim.
3. All fathers are parents.
4. Who is parent of jon?

Answer Extraction: Example 2

Answer the following query (Sentence 4) using the information provided by Sentences 1-3.

1. Whoever can read is literate.
2. Dolphins are not literate.
3. Flipper is an intelligent dolphin.
4. Who is intelligent but cannot read?

Answer Extraction: Example 2

Whoever can read is literate. $\quad \forall x[\operatorname{read}(x) \rightarrow \operatorname{lit}(x)]$

Dolphins are not literate.
$\forall x[\operatorname{dolp}(x) \rightarrow \neg \operatorname{lit}(x)]$

Flipper is an intelligent dolphin. $\quad \operatorname{dolp}(\operatorname{flip}) \wedge \operatorname{intell}(f l i p)$

Who is intelligent but cannot read?

Whoever can read is literate. $\quad \forall x[\operatorname{read}(x) \rightarrow \operatorname{lit}(x)]$

Dolphins are not literate.

$$
\forall x[\operatorname{dolp}(x) \rightarrow \neg \operatorname{lit}(x)]
$$

Flipper is an intelligent dolphin. $\quad \operatorname{dolp}(\boldsymbol{f l i p}) \wedge \operatorname{intell}($ flip $)$

Who is intelligent but cannot read?

Whoever that is intelligent but cannot read is the answer

Answer Extraction: Example 2

Whoever can read is literate.

$$
\forall x[\operatorname{read}(x) \rightarrow \operatorname{lit}(x)]
$$

Dolphins are not literate.

$$
\forall x[\operatorname{dolp}(x) \rightarrow \neg \operatorname{lit}(x)]
$$

Flipper is an intelligent dolphin. $\quad \operatorname{dolp}(\boldsymbol{f l i p}) \wedge \operatorname{intell}(\boldsymbol{f l i p})$

Who is intelligent but cannot read?

Whoever that is intelligent but cannot read is the answer
$\forall x[(\operatorname{intell}(x) \wedge \neg \operatorname{read}(x)) \rightarrow \operatorname{answer}(x)]$

Answer Extraction: Example 2

1. $(\neg \operatorname{read}(x), \operatorname{lit}(x))$
2. $(\neg \operatorname{dolp}(x), \neg \operatorname{lit}(x))$
3. $\operatorname{dolp}(\boldsymbol{f l i p})$
4. intell(flip)
5. $(\neg \operatorname{intell}(x), \operatorname{read}(x), \operatorname{answer}(x))$

Answer Extraction: Example 2

1. $(\neg \operatorname{read}(x), \operatorname{lit}(x))$
2. $(\neg \operatorname{dolp}(x), \neg l i t(x))$
3. $\operatorname{dolp}(\boldsymbol{f l i p})$
4. intell(flip)
5. $(\neg \operatorname{intell}(x), \operatorname{read}(x), \operatorname{answer}(x))$
6. $R[5 a, 4]\{x=$ flip $\} \quad($ read $(\boldsymbol{f l i p})$, answer $(\boldsymbol{f l i p}))$
7. $R[6,1 a]\{x=$ flip $\} \quad(\operatorname{lit}(\boldsymbol{f l i p})$, answer $(\boldsymbol{f l i p}))$
8. $R[7,2 b]\{x=$ flip $\} \quad(\neg \operatorname{dolp}($ flip $)$, answer $($ flip $))$
9. $R[8,3]$ answer(flip)
