CSC384 Knowledge Representation Part 2

Bahar Aameri & Sonya Allin

Winter 2020

These slides are drawn from or inspired by a multitude of sources including :

Yongmei Liu Faheim Bacchus Michael Winter Hector Levesque Let Φ be a set of sentences and A be a sentence. A is a logical consequence of Φ (denoted by $\Phi \models A$) iff for every structure \mathcal{M} , if $\mathcal{M} \models \Phi$ then $\mathcal{M} \models A$.

If A is a logical consequence of Φ , then there is no \mathcal{M} such that $\mathcal{M} \models \Phi \cup \{\neg A\}$. In other words, $\Phi \cup \{\neg A\}$ is **unsatisfiable**.

Example:

Assume Φ includes the following sentences: $\forall x \forall y \forall z [(above(z, y) \land above(y, x)) \rightarrow above(z, x)]$ $above(\mathbf{c_1}, \mathbf{c_2}) \land above(\mathbf{c_2}, \mathbf{c_3})$

$$\Phi \models above(C1, C2)$$

Knowledge-based Systems

Knowledge Base (KB): A collection of sentences that represents what the agent/program believes about the world.

Sentences in the KB are **explicit** knowledge of the agent. Logical consequences of the KB are **implicit** knowledge of the agent.

Example: Suppose KB includes the following sentences:

- The capital of Canada is Ottawa
- The largest province in Canada is Quebec
- The provinces neighbouring Quebec are Ontario, New Brunswick, and Newfoundland

Implicit knowledge of the KB:

Ontario, New Brunswick and Newfoundland are the neighbouring provinces of the largest province in Canada.

Proof Procedures

- To computing implicit knowledge of the KB (i.e., logical consequences) we need a mechanical procedure that can be implemented as an algorithm.
- · This would allow us to reason with our knowledge:
 - Represent the knowledge as logical formulas.
 - Apply the **procedure** for generating logical consequences
- Mechanical proof procedures work by manipulating formulas. They do not know or care anything about interpretations. Nevertheless they respect the semantics of interpretations!

A proof procedure is **sound** if whenever it **produces** a sentence *A* by manipulating sentences in a KB, then *A* is a **logical consequence** of KB (i.e., $KB \models A$). That is, **all conclusions** arrived at via the proof procedure are **correct**: they are logical consequences.

A proof procedure is **complete** if it can produce **all logical consequences** of KB. That is, if $KB \models A$, then the procedure can produce A.

We will develop a sound and complete proof procedure for first-order logic called Resolution.

Resolution works with formulas expressed in clausal form.

A literal is an atomic formula or the negation of an atomic formula. Example: dog(fido), $\neg cat(fido)$, P(x), $\neg Q(y)$

A clause is a disjunction of literals: **Example:** $P(x) \lor \neg Q(x, y)$ $\neg owns(fido, fred) \lor \neg dog(fido) \lor person(fred)$

A clausal theory is a conjunction of clauses. Example: (P(x)) + (Q(x)) + (P(x))

Resolution

The resolution proof procedure uses only one inference rule:

Resolution by Refutation

Resolution by Refutation:

- Assume $\neg A$ is true to generate a contradiction. (Refutation)
- Convert $\neg A$ and all sentences in KB to a clausal theory C.
- Resolve the clauses in C until an empty clause is obtained.

Resolution by Refutation: Example

Resolution by Refutation: Example

Want to prove likes(clyde,peanuts) from:

- 1. $elephant(clyde) \lor giraffe(clyde)$
- $\textbf{2. } \neg elephant(\textbf{clyde}) \lor likes(\textbf{clyde}, \textbf{peanuts})$
- **3.** $\neg giraffe(clyde) \lor likes(clyde, leaves)$
- 4. $\neg likes(clyde, leaves)$

Resolution by Refutation Proof:

- $\neg likes(clyde, peanuts)[5.]$
- 5&2: $\neg elephant(clyde)[6.]$
- 6&1: giraffe(clyde)[7.]
- 7&3: *likes*(*clyde*, *leaves*)[8.]
- 8&4: ()

To develop a complete resolution proof procedure for first-order logic we need :

- 1. A way of **converting** KB and A into **clausal form**.
- 2. A way of doing resolution even when we have variables (unification).

Conversion to Clausal Form

- 1. Eliminate Implications.
- 2. Move Negations Inwards (and simplify $\neg \neg$).
- 3. Standardize Variables.
- 4. Skolemization.
- 5. Convert to Prenix Form.
- 6. Distribute Conjunctions over Disjunctions.
- 7. Flatten nested Conjunctions and Disjunctions.
- 8. Convert to Clauses.

Implication Rule: $A \rightarrow B$ iff $\neg A \lor B$

$$\forall x \Big[P(x) \rightarrow \Big(\big(\forall y [P(y) \rightarrow P(f(x, y))] \big) \land \neg \big(\forall y [\neg q(x, y) \land P(y)] \big) \Big) \Big]$$

Eliminate Implication: $\forall x \Big[\neg P(x) \lor \Big((\forall y [\neg P(y) \lor P(f(x,y))]) \land \neg (\forall y [\neg q(x,y) \land P(y)]) \Big) \Big]$

Rules for Simplifying and Moving Negations Inwards

- $\neg \neg A$ iff A
- $\neg (A \land B)$ iff $\neg A \lor \neg B$
- $\neg (A \lor B)$ iff $\neg A \land \neg B$
- $\neg \forall x A$ iff $\exists x \neg A$
- $\neg \exists x A$ iff $\forall x \neg A$

$$\forall x \Big[\neg P(x) \lor \Big(\big(\forall y [\neg P(y) \lor P(f(x,y))] \big) \land \neg \big(\forall y [\neg Q(x,y) \land P(y)] \big) \Big) \Big]$$

Move Negations Inwards:

 $\forall x \Big[\neg P(x) \lor \Big(\big(\forall y [\neg P(y) \lor P(f(x,y))] \big) \land \big(\exists y [\neg \neg Q(x,y) \lor \neg P(y)] \big) \Big) \Big]$

Simplify Negations:

$$\forall x \Big[\neg P(x) \lor \Big(\big(\forall y [\neg P(y) \lor P(f(x,y))] \big) \land \big(\exists y [Q(x,y) \lor \neg P(y)] \big) \Big) \Big]$$

Standardize Variables: Rename variables so that each quantified variable is unique.

$$\forall x \Big[\neg P(x) \lor \Big(\big(\forall y [\neg P(y) \lor P(f(x,y))] \big) \land \big(\exists y [Q(x,y) \lor \neg P(y)] \big) \Big) \Big]$$

$$\forall x \Big[\neg P(x) \lor \Big(\big(\forall y [\neg P(y) \lor P(f(x,y))] \big) \land \big(\exists z [Q(x,z) \lor \neg P(z)] \big) \Big) \Big]$$

Skolemization: Remove existential quantifiers by introducing new function symbols.

$$\forall x \Big[\neg P(x) \lor \Big(\big(\forall y [\neg P(y) \lor P(f(x,y))] \big) \land \big(\exists z [Q(x,z) \lor \neg P(z)] \big) \Big] \Big)$$

- Consider $\exists y(elephant(y) \land friendly(y)$
- This asserts that there is **some individual** (binding for *y*) that is both an elephant and friendly.
- To remove the existential, we invent a "name" for this individual *a*. This "name" must be a new constant symbol (not equal to any previous constant symbols in the vocabulary of the KB):

 $elephant(\pmb{a}) \wedge friendly(\pmb{a})$

Skolemization

- Consider $\exists y(elephant(y) \land friendly(y))$
- This asserts that there is **some individual** (binding for *y*) that is both an elephant and friendly.
- To remove the existential, we invent a "name" for this individual *a*. This "name" must be a new constant symbol (not equal to any previous constant symbols in the vocabulary of the KB):

 $elephant(\boldsymbol{a}) \wedge friendly(\boldsymbol{a})$

- The new sentence says the same thing, since we do not know anything about *a*.
- **IMPORTANT:** The introduced symbol must be *a* is **new**. Else we might know something else about *a* in KB.
 - If we did know something else about *a* we would be asserting more than the existential.
 - In original quantified formula we know nothing about the variable y. Just what was being asserted by the existential formula.

Now consider

 $\forall x \exists y (loves(x, y))$

This formula states that for **every** x there is **some** y that x loves (possibly a different y for each x).

• Replacing the existential by a new constant won't work

 $\forall x(loves(x, \pmb{a}))$

This asserts that there is a **particular individual** *a* loved by **every** *x*.

Skolemization

Now consider

 $\forall x \exists y (loves(x, y))$

This formula states that for **every** x there is **some** y that x loves (possibly a different y for each x).

• Replacing the existential by a new constant won't work

 $\forall x(loves(x, \pmb{a}))$

This asserts that there is a **particular individual** *a* loved by **every** *x*.

- To properly convert existential quantifiers scoped by universal quantifiers we must use functions:
 - Use a new function symbol that mentions every universally quantified variable that scopes the existential.

 $\forall x(loves(x, g(x)))$

where g is a **new** function symbol.

This formula asserts that for every x there is some individual (denoted by g(x)) that x loves.

 $\forall x \forall y \forall z \exists w (R(x, y, z, w))$

 $\forall \gamma \forall \gamma \forall Z (R(\gamma, \overline{\beta}, Z, g_{(\gamma, \overline{\beta}, Z)}))$

 $\forall x \forall y \exists w (R(x,y,w))$

Yx Yz (R (20 7, g (2, 3)))

 $\forall x \forall y \exists w \forall z (R(x, y, w) \land Q(z, w))$

 $\forall x \forall y \forall z (R(x, y, g_3(x,y)) \land Q(z, g_3(x,y)))$

Skolemization: Remove existential quantifiers by introducing new function symbols.

$$\forall x \Big[\neg P(x) \lor \Big(\big(\forall y [\neg P(y) \lor P(f(x,y))] \big) \land \big(\exists z [Q(x,z) \lor \neg P(z)] \big) \Big) \Big]$$

$$\forall x \Big[\neg P(x) \lor \Big(\big(\forall y [\neg P(y) \lor P(f(x,y))] \big) \land \big(Q(x,g(x)) \lor \neg P(g(x)) \big) \Big) \Big]$$

Convert to Prenix Form: Bring all quantifiers to the front.

$$\forall x \Big[\neg P(x) \lor \Big(\big(\forall y [\neg P(y) \lor P(f(x,y))] \big) \land \big(Q(x,g(x)) \lor \neg P(g(x)) \big) \Big) \Big]$$

$$\forall x \forall y \Big[\neg P(x) \lor \Big(\big(\neg P(y) \lor P(f(x,y)) \big) \land \big(Q(x,g(x)) \lor \neg P(g(x)) \big) \Big) \Big]$$

Conjunctions over Disjunctions: $A \lor (B \land C)$ iff $(A \lor B) \land (A \lor C)$

$$\forall x \forall y \Big[\neg P(x) \lor \Big(\big(\neg P(y) \lor P(f(x,y)) \big) \land \big(Q(x,g(x)) \lor \neg P(g(x)) \big) \Big) \Big]$$

$$\forall x \forall y \Big[\Big(\neg P(x) \lor \big(\neg P(y) \lor P(f(x,y)) \Big) \Big) \land \Big(\neg P(x) \lor \big(Q(x,g(x)) \lor \neg P(g(x)) \big) \Big) \Big]$$

Flatten nested \wedge and $\vee :$

- $A \lor (B \lor C)$ to $(A \lor B \lor C)$
- $A \wedge (B \wedge C)$ to $(A \wedge B \wedge C)$

$$\forall x \forall y \Big[\Big(\neg P(x) \lor \Big(\neg P(y) \lor P(f(x,y)) \Big) \Big) \land \Big(\neg P(x) \lor \Big(Q(x,g(x)) \lor \neg P(g(x)) \Big) \Big]$$

$$\forall x \forall y \Big[\Big(\neg P(x) \lor \neg P(y) \lor P(f(x,y)) \Big) \land \Big(\neg P(x) \lor Q(x,g(x)) \lor \neg P(g(x)) \Big) \Big]$$

Convert to Clauses: Remove universal quantifiers and break apart conjunctions

$$\forall x \forall y \Big[\Big(\neg P(x) \lor \neg P(y) \lor P(f(x,y)) \Big) \land \Big(\neg P(x) \lor Q(x,g(x)) \lor \neg P(g(x)) \Big) \Big]$$

- $\neg P(x) \lor \neg P(y) \lor P(f(x,y))$
- $\bullet \ \neg P(x) \lor Q(x,g(x)) \lor \neg P(g(x))$

Unification

- If clauses have no variables syntactic identity can be used to detect if a P and ¬P exists.
- What about variables? Can the following clauses be resolved? (P(john), Q(fred), R(x)) ($\neg P(y), R(\textbf{susan}), R(y)$)
 - Once reduced to clausal form, all remaining variables are universally quantified. So, implicitly $(\neg P(y), R(susan), R(y))$ represents a whole set of clauses like $(\neg P(fred), R(susan), R(fred))$ $(\neg P(john), R(susan), R(john))$...
 - So there is a specialization of this clause that can be resolved with (P(john), Q(fred), R(x))
 - In particular

(P(john), Q(fred), R(john)) and $(\neg P(john), R(susan), R(john))$ can can be resolved, producing (Q(fred), R(john), R(susan))

Unification

- We want to be able to match conflicting literals, even when they have variables.
- The matching process automatically determines whether or not there is a specialization that matches.
- But, We don't want to over specialize!
 - $(\neg P(x), S(x), Q(\mathbf{fred}))$ - (P(y), R(y))

Possible resolvants:

The last resolvant is most-general, the other two are specializations of it.
 We want to keep the most general clause so that we can use it future resolution steps.

Substitution

- Unification is a mechanism for finding the most general matching.
- A key component of unification is substitution. A substitution is a finite set of equations of the form V = t where V is a variable and t is a term not containing V (t might contain other variables).
- We can apply a substitution $\delta = \{V_1 = t_1, ..., V_n = t_n\}$ to a formula A to obtain a new formula $A\delta$ by simultaneously replacing every variable V_i by term t_i .

Example: Applying $\delta = \{x=y, y=f(a)\}$ to P(x,g(y,z))

$$P(x,g(z,z)) = P(z,g(f(x),z))$$

Note that the substitutions are NOT applied sequentially, i.e., the first y is not subsequently replaced by f(a).

Composition of Substitutions

- We can compose two substitutions θ and δ to obtain a new substitution $\theta\delta$.
- Composition is a way of converting the sequential application of a series of substitutions to a single simultaneous substitution.

 $\begin{aligned} \theta &= \{x_1 = s_1, x_2 = s_2, ..., x_m = s_m\} \\ \delta &= \{y_1 = t_1, y_2 = t_2, ..., y_k = t_k\} \\ \text{To compute } \theta \delta: \end{aligned}$

- 1. Apply δ to each RHS of θ and then add all of the equations of δ : $\theta \delta = \{x_1 = s_1 \delta, x_2 = s_2 \delta, ..., x_m = s_m \delta, y_1 = t_1, y_2 = t_2, ..., y_k = t_k\}$
- 2. Delete any identities, i.e., equations of the form V = V from $\theta \delta$.
- 3. Delete any equation $y_i = s_i$ where y_i is equal to one of the x_j in θ .

Example: $\theta = \{x = f(\underline{y}), y = \underline{z}\}, \delta = \{x = a, y = b, z = y\}$ $\theta = \{x = f(\underline{y}), y = \underline{z}\}, \delta = \{x = a, y = b, z = y\}$ $\theta = \{x = f(\underline{y}), y = \underline{z}\}, \delta = \{x = a, y = b, z = y\}$ $\chi = \{x = a, y = y\}$ $\chi = \{x = a,$

 $\Theta = \{ \mathfrak{n} = f(b), \mathbb{Z} = \mathfrak{F} \}$

Composition of Substitutions

- The empty substitution $\epsilon = \{\}$ is also a substitution, and it acts as an identity under composition.
- Substitutions when applied to formulas are associative:

 $(f\theta)\delta=f(\theta\delta)$

A unifier of two formulas f and g is a substitution δ that makes f and g syntactically identical.

Not all formulas can be unified since substitutions only affect variables.

Example:

 $P(f(x), \boldsymbol{a}) \qquad P(y, f(w))$

This pair cannot be unified as there is no way of making $\boldsymbol{a} = f(w)$ with a substitution.

Most General Unifier (MGU)

A substitution δ of two formulas f and g is a Most General Unifier (MGU) if:

- 1. δ is a **unifier**.
- 2. For every other unifier θ of f and g there exist a third substitution λ such that

 $\theta = \delta \lambda$

That is, every other unifier is more specialized than δ . The MGU of a pair of formulas f and g is unique up to renaming.

The MGU is the "least specialized" way of making clauses with universal variables match.

 $P(f(x), z) = P(y, \boldsymbol{a})$

 $\delta = \{y = f(a), x = a, z = a\}$ is a unifier. But it is not an MGU.

 $P(f(x),z)\delta = P(f(\alpha), \alpha)$ $P(y,a)\delta = P(f(\alpha), \alpha)$

$$\theta = \{ y = f(x), z = \boldsymbol{a} \}$$
 is an MGU.

$$P(f(x),\underline{z})\theta = \mathsf{P}(f(\mathbf{x}), \alpha)$$
$$P(\underline{y}, \underline{a})\theta = \mathsf{P}(f(\mathbf{x}), \alpha)$$

$$\delta = \theta \lambda$$
, where $\lambda = \{x = \boldsymbol{a}\}$

Computing MGUs: Intuition

- We line up the two formulas and find the first sub-expression where they disagree.
- The pair of sub-expressions where they first disagree is called the disagreement set.
- The algorithm works by successively fixing disagreement sets until the two formulas become syntactically identical.

Most General Unifier

To find the MGU of two formulas f and g.

- 1. $k = 0; \quad \delta_0 = \{\}; \quad S_0 = \{f, g\}.$
- 2. REPEAT UNTIL no more disagreement:
- 3. Find disagreement set $D_k = \{e_1, e_2\}$.
- 4. IF e₁ = V, where V is a variable, and e₂ = t, where t is a term not containing V, or vice-versa then:
 - $\delta_{k+1} = \delta_k \{ V = t \}$ # Compose the additional substitution
 - $S_{k+1} = S_k \{ V = t \}$ # Apply the additional substitution
 - k = k + 1
- 5. ELSE unification is not possible.

•
$$\delta_0 = \{\}; S_0 = \{P(f(\mathbf{a}), g(x)), P(y,y)\}$$

•
$$\delta_0 = \{\}; S_0 = \{P(f(a), g(x)), P(y, y)\}$$

•
$$D_0 = \{f(a), y\}$$

•
$$\delta_0 = \{\}; S_0 = \{P(f(\boldsymbol{a}), g(x)), P(\boldsymbol{y}, \boldsymbol{y})\}$$

•
$$D_0 = \{f(a), y\}$$

•
$$\delta_1 = \{ y = f(a) \}; S_1 = \{ P(f(a), g(x)) , P(f(a), f(a)) \}$$

•
$$\delta_0 = \{\}; S_0 = \{P(f(\boldsymbol{a}), g(x)) , P(y,y)\}$$

• $D_0 = \{f(\boldsymbol{a}), y\}$
• $\delta_1 = \{y = f(\boldsymbol{a})\}; S_1 = \{P(f(\boldsymbol{a}), g(x)) , P(f(\boldsymbol{a}), f(\boldsymbol{a}))\}$
• $D_1 = \{g(x), f(\boldsymbol{a})\}$

•
$$\delta_0 = \{\}; S_0 = \{P(f(\boldsymbol{a}), g(x)), P(y, y)\}$$

•
$$D_0 = \{f(a), y\}$$

•
$$\delta_1 = \{y = f(\boldsymbol{a})\}; S_1 = \{P(f(\boldsymbol{a}), g(x)), P(f(\boldsymbol{a}), f(\boldsymbol{a}))\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

•
$$D_1 = \{g(x), f(a)\}$$

• no unification possible!

•
$$\delta_0 = \{\}; \quad S_0 = \{P(\mathbf{a}, x, h(g(z))) \ , \ P(z, h(y), h(y))\}$$

•
$$\delta_0 = \{\}; \quad S_0 = \{P(\mathbf{a}, x, h(g(z))) , P(z, h(y), h(y))\}$$

• $D_0 = \{\mathbf{a}, z\}$

- $\delta_0 = \{\}; \quad S_0 = \{P(\mathbf{a}, x, h(g(z))) , P(z, h(y), h(y))\}$
- $D_0 = \{a, z\}$
- $\delta_1 = \{ z = a \}; \quad S_1 = \{ P(a, x, h(g(a))) , P(a, h(y), h(y)) \}$

- $\delta_0 = \{\}; \quad S_0 = \{P(\mathbf{a}, x, h(g(z))) , P(z, h(y), h(y))\}$
- $D_0 = \{a, z\}$
- $\delta_1 = \{z = a\}; \quad S_1 = \{P(a, x, h(g(a))), P(a, h(y), h(y))\}$ • $D_1 = \{x, h(y)\}$

- $\delta_0 = \{\}; \quad S_0 = \{P(\mathbf{a}, x, h(g(z))) \ , \ P(z, h(y), h(y))\}$
- $D_0 = \{a, z\}$ • $\delta_1 = \{z = a\}; \quad S_1 = \{P(a, x, h(g(a))), P(a, h(y), h(y))\}$ • $D_1 = \{x, h(y)\}$ • $\delta_2 = \{z = a, x = h(a)\};$

•
$$\delta_2 = \{z = \mathbf{a}, x = h(y)\};\$$

 $S_2 = \{P(\mathbf{a}, h(y), h(g(\mathbf{a}))); P(\mathbf{a}, h(y), h(y))\}$

- $\delta_0 = \{\}; \quad S_0 = \{P(\pmb{a}, x, h(g(z))) \ , \ P(z, h(y), h(y))\}$
- $D_0 = \{a, z\}$ • $\delta_1 = \{z = a\}; \quad S_1 = \{P(a, x, h(g(a))), P(a, h(y), h(y))\}$ • $D_1 = \{x, h(y)\}$ • $\delta_2 = \{z = a, x = h(y)\};$ $S_2 = \{P(a, h(y), h(g(a))); P(a, h(y), h(y))\}$ • $D_2 = \{g(a), y\}$

A D F A 目 F A E F A E F A Q Q

•
$$\delta_0 = \{\}; \quad S_0 = \{P(\mathbf{a}, x, h(g(z))) , P(z, h(y), h(y))\}$$

• $D_0 = \{\mathbf{a}, z\}$
• $\delta_1 = \{z = \mathbf{a}\}; \quad S_1 = \{P(\mathbf{a}, x, h(g(\mathbf{a}))) , P(\mathbf{a}, h(y), h(y))\}$
• $D_1 = \{x, h(y)\}$
• $\delta_2 = \{z = \mathbf{a}, x = h(y)\};$
 $S_2 = \{P(\mathbf{a}, h(y), h(g(\mathbf{a}))) ; P(\mathbf{a}, h(y), h(y))\}$
• $D_2 = \{g(\mathbf{a}), y\}$
• $\delta_3 = \{z = \mathbf{a}, x = h(y)\}\{y = g(\mathbf{a})\}$

$$S_{3} = \{z = a, x = h(g(a)), y = g(a)\}$$
$$= \{z = a, x = h(g(a)), y = g(a)\}$$
$$S_{3} = \{P(a, h(g(a)), h(g(a))); P(a, h(g(a)), h(g(a)))\}$$

•
$$\delta_0 = \{\}; \quad S_0 = \{P(\mathbf{a}, x, h(g(z))), P(z, h(y), h(y))\}$$

• $D_0 = \{\mathbf{a}, z\}$
• $\delta_1 = \{z = \mathbf{a}\}; \quad S_1 = \{P(\mathbf{a}, x, h(g(\mathbf{a}))), P(\mathbf{a}, h(y), h(y))\}$
• $D_1 = \{x, h(y)\}$
• $\delta_2 = \{z = \mathbf{a}, x = h(y)\};$
 $S_2 = \{P(\mathbf{a}, h(y), h(g(\mathbf{a}))); P(\mathbf{a}, h(y), h(y))\}$
• $D_2 = \{g(\mathbf{a}), y\}$
• $\delta_3 = \{z = \mathbf{a}, x = h(y)\}\{y = g(\mathbf{a})\}$
 $= \{z = \mathbf{a}, x = h(g(\mathbf{a})), y = g(\mathbf{a})\}$
 $S_3 = \{P(\mathbf{a}, h(g(\mathbf{a})), h(g(\mathbf{a}))); P(\mathbf{a}, h(g(\mathbf{a})), h(g(\mathbf{a})))\}$

• No disagreement $\Rightarrow \delta = \{z = a, x = h(g(a)), y = g(a)\}$ is MGU

•
$$S_0 = \{P(x,x) , P(y,f(y))\}$$

•
$$S_0 = \{P(x,x) , P(y,f(y))\}$$

• $D_0 = \{x,y\}$
• $\delta_1 = \{x = y\}, S_1 = \{P(y,y) , P(y,f(y))\}$

•
$$S_0 = \{P(x,x) , P(y, f(y))\}$$

• $D_0 = \{x, y\}$
• $\delta_1 = \{x = y\}, S_1 = \{P(y,y) , P(y,f(y))\}$
• $D_1 = \{y, f(y)\}$

•
$$S_0 = \{P(x,x) , P(y,f(y))\}$$

• $D_0 = \{x,y\}$
• $\delta_1 = \{x = y\}, S_1 = \{P(y,y) , P(y,f(y))\}$
• $D_1 = \{y, f(y)\}$

• no unification possible!

Consider two clauses: $\begin{array}{l} (L,Q_1,Q_2,...,Q_k) \\ (\neg M,R_1,R_2,...,R_n) \end{array}$ where there exists an MGU δ for L and M.

We apply δ to both clauses, resolve $L\delta$ and $\neg M\delta$, and infer the new clause $(Q_1\delta, Q_2\delta, ..., Q_k\delta, R_1\delta, R_2\delta, ..., R_n\delta)$

 $\begin{array}{l} (P(x),Q(g(x)))\\ (R(\pmb{a}),Q(z),\neg P(\pmb{a})) \end{array}$

 $L = P(x), M = P(a) \qquad P(x) \S = P(x)$ $\delta = \{x = a\}$

 $R[1a, 2c]\{x = a\}(Q(g(a)), R(a), Q(z))$

$$Q(g(r)) = Q(g(n))$$

Resolution of Clauses with Variables: Example

$$\begin{split} &(P(x), Q(g(x))))\\ &(R(\pmb{a}), Q(z), \neg P(\pmb{a}))\\ &L = P(x), M = P(\pmb{a})\\ &\delta = \{x = \pmb{a}\}\\ &R[1a, 2c]\{x = \pmb{a}\}(Q(g(\pmb{a})), R(\pmb{a}), Q(z)) \end{split}$$

The notation is important. You will need to use this notation on the exam!

- R: resolution step.
- 1a: the first (a-th) literal in the first clause; i.e. P(x).
- 2c: the third (c-th) literal in the second clause; i.e., $\neg P(a)$.
 - 1a and 2c are the clashing literals.
- $\{x = a\}$: the **substitution** applied to make the clashing literals identical.

Step 1: Pick a vocabulary for representing these assertions.

Step 1: Pick a vocabulary for representing these assertions.

 $\begin{array}{l} P(x){:}\;x\;\text{is a patient.}\\ D(x){:}\;x\;\text{is a doctor.}\\ Q(x){:}\;x\;\text{is a quack.}\\ L(x,y){:}\;x\;\text{likes }y. \end{array}$

Step 2: Convert each assertion to a first-order formula.

Step 2: Convert each assertion to a first-order formula.

 $F_1: \exists x [P(x) \land \forall y [D(y) \to L(x,y))]]$

Step 2: Convert each assertion to a first-order formula.

 $F_1: \exists x [P(x) \land \forall y [D(y) \to L(x,y))]]$

 $F_2: \forall x \forall y [(P(x) \land Q(y)) \to \neg L(x,y)]$

Step 2: Convert each assertion to a first-order formula.

 $F_1 : \exists x [P(x) \land \forall y [D(y) \to L(x, y))]]$ $F_2 : \forall x \forall y [(P(x) \land Q(y)) \to \neg L(x, y)]$

Query: $\forall x[D(x) \rightarrow \neg Q(x)]$

Step 3: Convert to Clausal form.

 $F_1: \exists x [P(x) \land \forall y [D(y) \to L(x,y))]]$ $\exists x \int P(x) \wedge \forall x \int T D(x) \vee L(x, x) \int dx \int dx \int T D(x) \nabla L(x, x) \int dx$ $P(\alpha) \wedge \forall \Im [\neg D(\alpha) \vee L(\alpha, \Im)] \# Skolemization$ ∀3 [P(a) ~ (7D(a) V L (a, 3)) 1. P(a) 2. (7D(a) V L (a, z))

 $F_2: \forall x \forall y [(P(x) \land Q(y)) \to \neg L(x, y)]$

$$\forall x \forall z [\tau(P(n) \land Q(z)) \lor L(n, z)]$$

 $\forall x \forall z [\tau P(n) \lor \tau Q(z) \lor \tau L(x, z)]$
 $2 \tau P(n) \lor \tau Q(z) \lor \tau L(n, z)$

Negation of Query: $\neg(\forall x[D(x) \rightarrow \neg Q(x)])$ $\exists x \neg [\neg D(x) \lor \neg Q(x)]$ $\exists x [D(x) \land Q(x)]$ $(\downarrow) D(b) \land Q(b) \neq SKolemization$ CSC384 | University of Toronto

- 1. P(**a**)
- **2.** $(\neg D(y), L(a, y))$
- 3. $(\neg P(x), \neg Q(y), \neg L(x, y))$
- **4**. *D*(**b**)
- 5. Q(b)

- 1. P(**a**)
- **2.** $(\neg D(y), L(a, y))$
- 3. $(\neg P(x), \neg Q(y), \neg L(x, y))$
- **4**. *D*(**b**)
- 5. Q(b)
- **6.** $R[3b, 5]\{y = b\}$ $(\neg P(x), \neg L(x, b))$

- 1. P(**a**)
- **2.** $(\neg D(y), L(a, y))$
- 3. $(\neg P(x), \neg Q(y), \neg L(x, y))$
- **4**. *D*(**b**)
- 5. Q(b)
- **6.** $R[3b, 5]\{y = b\}$ $(\neg P(x), \neg L(x, b))$
- 7. $R[6a, 1]\{x = a\} \neg L(a, b)$

- 1. P(**a**)
- **2.** $(\neg D(y), L(a, y))$
- 3. $(\neg P(x), \neg Q(y), \neg L(x, y))$
- **4**. *D*(**b**)
- 5. Q(b)
- **6.** $R[3b, 5]\{y = b\}$ $(\neg P(x), \neg L(x, b))$
- 7. $R[6a, 1]\{x = a\} \neg L(a, b)$
- 8. $R[7, 2b]\{y = b\} \neg D(b)$

- 1. P(**a**)
- **2.** $(\neg D(y), L(a, y))$
- **3.** $(\neg P(x), \neg Q(y), \neg L(x, y))$
- **4**. *D*(**b**)
- 5. Q(b)
- 6. $R[3b, 5]\{y = b\}$ $(\neg P(x), \neg L(x, b))$ 7. $R[6a, 1]\{x = a\}$ $\neg L(a, b)$
- 8. $R[7, 2b]\{y = b\} \neg D(b)$
- **9.** R[8, 4] ()

Answer Extraction

- The previous example shows how we can answer Yes-No questions.
- With a bit more effort we can also answer "fill-in-the-blanks" questions:
 - Use free variables in the query where we want the fill in the blanks.
 - Keep track of the binding that these variables received in proving the query.
 parent(art, jon) is art one of jon's parents?
 parent(x, jon) who is one of jon's parents?
 - A simple bookkeeping device is to use a predicate symbol answer(x, y, ...) to keep track of the bindings automatically.
 Example: To answer parent(x, jon), construct the clause:

```
(\neg parent(x, jon), answer(x))
```

Then perform resolution **until** obtain a clause consisting of **only** *answer* **literals** (previously we stopped at empty clauses).

- 1. father(art, jon)
- 2. father(bob, kim)
- 3. $(\neg father(y, z), parent(y, z))$ (all fathers are parents)
- 4. $(\neg parent(x, jon), answer(x))$ (who is parent of jon?)

- 1. father(art, jon)
- 2. father(bob, kim)
- 3. $(\neg father(y, z), parent(y, z))$ (all fathers are parents)
- 4. $(\neg parent(x, jon), answer(x))$ (who is parent of jon?)

5.
$$R[4,3b] \{y = x, z = jon\} (\neg father(x, jon), answer(x))$$

6. $R[5,1] \{x = art\}$ answer(art)

Answer the following query (Sentence 4) using the information provided by Sentences 1-3.

- 1. Either bob or art is father of jon.
- 2. bob is father of kim.
- 3. All fathers are parents.
- 4. Who is parent of jon?

Answer the following query (Sentence 4) using the information provided by Sentences 1-3.

- 1. Whoever can read is literate.
- 2. Dolphins are not literate.
- 3. Flipper is an intelligent dolphin.
- 4. Who is intelligent but cannot read?

Whoever can read is literate.

 $\forall x [read(x) \to lit(x)]$

Dolphins are not literate.

 $\forall x [dolp(x) \rightarrow \neg lit(x)]$

Flipper is an intelligent dolphin.

 $dolp(\pmb{flip}) \wedge intell(\pmb{flip})$

Who is intelligent but cannot read?

Whoever can read is literate.

$$\forall x [read(x) \rightarrow lit(x)]$$

Dolphins are not literate.

 $\forall x[dolp(x) \rightarrow \neg lit(x)]$

Flipper is an intelligent dolphin.

 $dolp(\boldsymbol{flip}) \wedge intell(\boldsymbol{flip})$

Who is intelligent but cannot read?

Whoever that is intelligent but cannot read is the answer

Whoever can read is literate.

$$\forall x [read(x) \rightarrow lit(x)]$$

Dolphins are not literate.

 $\forall x [dolp(x) \to \neg lit(x)]$

Flipper is an intelligent dolphin.

 $dolp(\boldsymbol{flip}) \wedge intell(\boldsymbol{flip})$

Who is intelligent but cannot read?

Whoever that is intelligent but cannot read is the answer

 $\forall x [(intell(x) \land \neg read(x)) \rightarrow answer(x)]$

- 1. $(\neg read(x), lit(x))$
- 2. $(\neg dolp(x), \neg lit(x))$
- $\textbf{3. } dolp(\textbf{\textit{flip}})$
- $4. \ intell(\textit{flip})$
- 5. $(\neg intell(x), read(x), answer(x))$

- 1. $(\neg read(x), lit(x))$
- 2. $(\neg dolp(x), \neg lit(x))$
- 3. dolp(flip)
- $4. \ intell(\textit{flip})$
- 5. $(\neg intell(x), read(x), answer(x))$
- 6. $R[5a, 4] \{x = flip\}$ (read(flip), answer(flip))
- 7. $R[6, 1a] \{x = flip\}$ (lit(flip), answer(flip))
- 8. $R[7, 2b] \{x = flip\} (\neg dolp(flip), answer(flip))$
- 9. R[8,3] answer(**flip**)