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Logical Consequence
Let Φ be a set of sentences and A be a sentence.
A is a logical consequence of Φ (denoted by Φ |= A) i� for every structure M,if M |= Φ then M |= A.

If A is a logical consequence of Φ, then there is no M such that M |= Φ ∪ {¬A}.In other words,Φ ∪ {¬A} is unsatisfiable.

Example:Assume Φ includes the following sentences:
∀x∀y∀z[(above(z, y) ∧ above(y, x)) → above(z, x)]

above(c1, c2c1, c2c1, c2) ∧ above(c2, c3c2, c3c2, c3)
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Knowledge-based Systems
Knowledge Base (KB): A collection of sentences that represents what the agent/program be-lieves about the world.

Sentences in the KB are explicit knowledge of the agent.Logical consequences of the KB are implicit knowledge of the agent.
Example: Suppose KB includes the following sentences:

• The capital of Canada is Ottawa
• The largest province in Canada is Quebec
• The provinces neighbouring Quebec are Ontario, New Brunswick, and Newfoundland

Implicit knowledge of the KB:Ontario, New Brunswick and Newfoundland are the neighbouring provinces of the largestprovince in Canada.
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Proof Procedures
• To computing implicit knowledge of the KB (i.e., logical consequences) we need a me-

chanical procedure that can be implemented as an algorithm.
• This would allow us to reason with our knowledge:

– Represent the knowledge as logical formulas.
– Apply the procedure for generating logical consequences

• Mechanical proof procedures work by manipulating formulas.They do not know or care anything about interpretations.Nevertheless they respect the semantics of interpretations!

CSC384 | University of Toronto 5



Proof Procedures

A proof procedure is sound if whenever it produces a sentence A by manipulating sentencesin a KB, then A is a logical consequence of KB (i.e., KB |= A).That is, all conclusions arrived at via the proof procedure are correct: they are logical conse-quences.

A proof procedure is complete if it can produce all logical consequences of KB.That is, if KB |= A, then the procedure can produce A.

We will develop a sound and complete proof procedure for first-order logic called Resolution.
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Resolution
Resolution works with formulas expressed in clausal form.

A literal is an atomic formula or the negation of an atomic formula.
Example: dog(fidofidofido),¬cat(fidofidofido), P (x),¬Q(y)

A clause is a disjunction of literals:
Example:
P (x) ∨ ¬Q(x, y)

¬owns(fido, fredfido, fredfido, fred) ∨ ¬dog(fidofidofido) ∨ person(fredfredfred)

A clausal theory is a conjunction of clauses.
Example:(
P (x) ∨ ¬Q(x, y)

)
∧(

¬owns(fido, fredfido, fredfido, fred) ∨ ¬dog(fidofidofido) ∨ person(fredfredfred)
)
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Resolution
The resolution proof procedure uses only one inference rule:(
Q(x, y) ∨ P (aaa)

) and (
R(y) ∨ ¬P (aaa)

)

(
Q(x, y) ∨ P (aaa)

) and ¬P (aaa)

P (aaa) and ¬P (aaa)

We denote a contradiction by an empty clause: ()
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Resolution by Refutation

Resolution by Refutation:

• Assume ¬A is true to generate a contradiction. (Refutation)
• Convert ¬A and all sentences in KB to a clausal theory C.
• Resolve the clauses in C until an empty clause is obtained.
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Resolution by Refutation: Example
Want to prove likes(clyde,peanutsclyde,peanutsclyde,peanuts) from:

1. elephant(clydeclydeclyde) ∨ giraffe(clydeclydeclyde)

2. ¬elephant(clydeclydeclyde) ∨ likes(clyde, peanutsclyde, peanutsclyde, peanuts)

3. ¬giraffe(clydeclydeclyde) ∨ likes(clyde, leavesclyde, leavesclyde, leaves)

4. ¬likes(clyde, leavesclyde, leavesclyde, leaves)

Assume: 5. ¬likes(clyde, peanutsclyde, peanutsclyde, peanuts)

¬likes(clyde, peanutsclyde, peanutsclyde, peanuts) ¬elephant(clydeclydeclyde) ∨ likes(clyde, peanutsclyde, peanutsclyde, peanuts)

¬elephant(clydeclydeclyde) elephant(clydeclydeclyde) ∨ giraffe(clydeclydeclyde)

giraffe(clydeclydeclyde) ¬giraffe(clydeclydeclyde) ∨ likes(clyde, leavesclyde, leavesclyde, leaves)

likes(clyde, leavesclyde, leavesclyde, leaves) ¬likes(clyde, leavesclyde, leavesclyde, leaves)
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Resolution by Refutation: Example
Want to prove likes(clyde,peanutsclyde,peanutsclyde,peanuts) from:

1. elephant(clydeclydeclyde) ∨ giraffe(clydeclydeclyde)

2. ¬elephant(clydeclydeclyde) ∨ likes(clyde, peanutsclyde, peanutsclyde, peanuts)

3. ¬giraffe(clydeclydeclyde) ∨ likes(clyde, leavesclyde, leavesclyde, leaves)

4. ¬likes(clyde, leavesclyde, leavesclyde, leaves)

Resolution by Refutation Proof:
• ¬likes(clyde, peanutsclyde, peanutsclyde, peanuts)[5.]

• 5&2: ¬elephant(clydeclydeclyde)[6.]

• 6&1: giraffe(clydeclydeclyde)[7.]

• 7&3: likes(clyde, leavesclyde, leavesclyde, leaves)[8.]

• 8&4: ()
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Resolution by Refutation

To develop a complete resolution proof procedure for first-order logic we need :
1. A way of converting KB and A into clausal form.
2. A way of doing resolution even when we have variables (unification).
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Conversion to Clausal Form
1. Eliminate Implications.
2. Move Negations Inwards (and simplify ¬¬).
3. Standardize Variables.
4. Skolemization.
5. Convert to Prenix Form.
6. Distribute Conjunctions over Disjunctions.
7. Flatten nested Conjunctions and Disjunctions.
8. Convert to Clauses.
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Eliminate Implications

Implication Rule: A→ B i� ¬A ∨B

∀x
[
P (x)→

((
∀y[P (y)→P (f(x, y))]

)
∧ ¬
(
∀y[¬q(x, y) ∧ P (y)]

))]

Eliminate Implication: ∀x
[
¬P (x)∨

((
∀y[¬P (y)∨P (f(x, y))]

)
∧ ¬
(
∀y[¬q(x, y) ∧ P (y)]

))]
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Rules for Simplifying and Moving Negations Inwards
• ¬¬A i� A

• ¬(A ∧B) i� ¬A ∨ ¬B

• ¬(A ∨B) i� ¬A ∧ ¬B

• ¬∀xA i� ∃x¬A

• ¬∃xA i� ∀x¬A
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Simplify and Move Negations Inwards

∀x
[
¬P (x) ∨

((
∀y[¬P (y) ∨ P (f(x, y))]

)
∧ ¬
(
∀y[¬Q(x, y) ∧ P (y)]

))]

Move Negations Inwards:
∀x
[
¬P (x) ∨

((
∀y[¬P (y) ∨ P (f(x, y))]

)
∧
(
∃y[¬¬Q(x, y)∨¬P (y)]

))]

Simplify Negations:
∀x
[
¬P (x) ∨

((
∀y[¬P (y) ∨ P (f(x, y))]

)
∧
(
∃y[Q(x, y) ∨ ¬P (y)]

))]
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Standardize Variables

Standardize Variables: Rename variables so that each quantified variable is unique.

∀x
[
¬P (x) ∨

((
∀y[¬P (y) ∨ P (f(x, y))]

)
∧
(
∃y[Q(x, y) ∨ ¬P (y)]

))]

∀x
[
¬P (x) ∨

((
∀y[¬P (y) ∨ P (f(x, y))]

)
∧
(
∃z[Q(x, z) ∨ ¬P (z)]

))]
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Skolemization

Skolemization: Remove existential quantifiers by introducing new function symbols.

∀x
[
¬P (x) ∨

((
∀y[¬P (y) ∨ P (f(x, y))]

)
∧
(
∃z[Q(x, z) ∨ ¬P (z)]

))]
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Skolemization
• Consider ∃y(elephant(y) ∧ friendly(y)

• This asserts that there is some individual (binding for y) that is both an elephant andfriendly.

• To remove the existential, we invent a "name" for this individual aaa.This "name" must be a new constant symbol (not equal to any previous constant sym-bols in the vocabulary of the KB):
elephant(aaa) ∧ friendly(aaa)
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Skolemization
• Consider ∃y(elephant(y) ∧ friendly(y)

• This asserts that there is some individual (binding for y) that is both an elephant andfriendly.
• To remove the existential, we invent a "name" for this individual aaa.This "name" must be a new constant symbol (not equal to any previous constant sym-bols in the vocabulary of the KB):

elephant(aaa) ∧ friendly(aaa)

• The new sentence says the same thing, since we do not know anything about aaa.
• IMPORTANT: The introduced symbol must be aaa is new.Else we might know something else about aaa in KB.

– If we did know something else about aaa we would be asserting more than theexistential.
– In original quantified formula we know nothing about the variable y. Just whatwas being asserted by the existential formula.
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Skolemization
• Now consider

∀x∃y(loves(x, y))

This formula states that for every x there is some y that x loves (possibly a di�erent
y for each x).

• Replacing the existential by a new constant won’t work

∀x(loves(x,aaa))

This asserts that there is a particular individual aaa loved by every x.

CSC384 | University of Toronto 20



Skolemization
• Now consider

∀x∃y(loves(x, y))

This formula states that for every x there is some y that x loves (possibly a di�erent
y for each x).

• Replacing the existential by a new constant won’t work

∀x(loves(x,aaa))

This asserts that there is a particular individual aaa loved by every x.
• To properly convert existential quantifiers scoped by universal quantifiers we mustuse functions:

– Use a new function symbol that mentions every universally quantified variablethat scopes the existential.
∀x(loves(x, g(x))

where g is a new function symbol.This formula asserts that for every x there is some individual (denoted by g(x))that x loves.
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Skolemization: Examples
∀x∀y∀z∃w(R(x, y, z, w))

∀x∀y∃w(R(x, y, w))

∀x∀y∃w∀z(R(x, y, w) ∧Q(z, w))
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Skolemization

Skolemization: Remove existential quantifiers by introducing new function symbols.

∀x
[
¬P (x) ∨

((
∀y[¬P (y) ∨ P (f(x, y))]

)
∧
(
∃z[Q(x, z) ∨ ¬P (z)]

))]

∀x
[
¬P (x) ∨

((
∀y[¬P (y) ∨ P (f(x, y))]

)
∧
(
Q(x, g(x)) ∨ ¬P (g(x))

))]
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Convert to Prenix Form

Convert to Prenix Form: Bring all quantifiers to the front.

∀x
[
¬P (x) ∨

((
∀y[¬P (y) ∨ P (f(x, y))]

)
∧
(
Q(x, g(x)) ∨ ¬P (g(x))

))]

∀x∀y
[
¬P (x) ∨

((
¬P (y) ∨ P (f(x, y))

)
∧
(
Q(x, g(x)) ∨ ¬P (g(x))

))]
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Distribute Conjunctions over Disjunctions

Conjunctions over Disjunctions: A ∨ (B ∧ C) i� (A ∨B) ∧ (A ∨ C)

∀x∀y
[
¬P (x)∨

((
¬P (y) ∨ P (f(x, y))

)
∧
(
Q(x, g(x)) ∨ ¬P (g(x))

))]

∀x∀y
[(

¬P (x)∨
(
¬P (y) ∨ P (f(x, y))

))
∧
(
¬P (x)∨

(
Q(x, g(x)) ∨ ¬P (g(x))

))]
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Flatten nested Conjunctions and Disjunctions
Flatten nested ∧ and ∨:

• A ∨ (B ∨ C) to (A ∨B ∨ C)

• A ∧ (B ∧ C) to (A ∧B ∧ C)

∀x∀y
[(

¬P (x) ∨
(
¬P (y) ∨ P (f(x, y))

))
∧
(
¬P (x) ∨

(
Q(x, g(x)) ∨ ¬P (g(x))

))]

∀x∀y
[(

¬P (x) ∨ ¬P (y) ∨ P (f(x, y))
)
∧
(
¬P (x) ∨Q(x, g(x)) ∨ ¬P (g(x))

)]
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Convert to Clauses
Convert to Clauses: Remove universal quantifiers and break apart conjunctions

∀x∀y
[(

¬P (x) ∨ ¬P (y) ∨ P (f(x, y))
)
∧
(
¬P (x) ∨Q(x, g(x)) ∨ ¬P (g(x))

)]

• ¬P (x) ∨ ¬P (y) ∨ P (f(x, y))

• ¬P (x) ∨Q(x, g(x)) ∨ ¬P (g(x))
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Unification
• If clauses have no variables syntactic identity can be used to detect if a P and ¬Pexists.
• What about variables? Can the following clauses be resolved?

(P (johnjohnjohn), Q(fredfredfred), R(x))

(¬P (y), R(susansusansusan), R(y))

– Once reduced to clausal form, all remaining variables are universally quantified.So, implicitly (¬P (y), R(susansusansusan), R(y)) represents a whole set of clauses like
(¬P (fredfredfred), R(susansusansusan), R(fredfredfred))

(¬P (johnjohnjohn), R(susansusansusan), R(johnjohnjohn))...
– So there is a specialization of this clause that can be resolved with

(P (johnjohnjohn), Q(fredfredfred), R(x))

– In particular
(P (johnjohnjohn), Q(fredfredfred), R(johnjohnjohn)) and (¬P (johnjohnjohn), R(susansusansusan), R(johnjohnjohn))can can be resolved, producing
(Q(fredfredfred), R(johnjohnjohn), R(susansusansusan))
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Unification
• We want to be able to match conflicting literals, even when they have variables.
• The matching process automatically determines whether or not there is a specializa-tion that matches.
• But, We don’t want to over specialize!

- (¬P (x), S(x), Q(fredfredfred))- (P (y), R(y))

Possible resolvants:

• The last resolvant is most-general, the other two are specializations of it.We want to keep the most general clause so that we can use it future resolution steps.
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Substitution
• Unification is a mechanism for finding the most general matching.
• A key component of unification is substitution.A substitution is a finite set of equations of the form V = t where V is a variable and
t is a term not containing V (t might contain other variables).

• We can apply a substitution δ = {V1 = t1, ..., Vn = tn} to a formula A to obtain a newformula Aδ by simultaneously replacing every variable Vi by term ti.
Example: Applying δ = {x = y, y = f(a)} to P (x, g(y, z))

Note that the substitutions are NOT applied sequentially, i.e., the first y is not subse-quently replaced by f(a).
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Composition of Substitutions
• We can compose two substitutions θ and δ to obtain a new substitution θδ.
• Composition is a way of converting the sequential application of a series of substitu-tions to a single simultaneous substitution.
θ = {x1 = s1, x2 = s2, ..., xm = sm}
δ = {y1 = t1, y2 = t2, ..., yk = tk}To compute θδ:

1. Apply δ to each RHS of θ and then add all of the equations of δ:
θδ = {x1 = s1δ, x2 = s2δ, ..., xm = smδ, y1 = t1, y2 = t2, ..., yk = tk}

2. Delete any identities, i.e., equations of the form V = V from θδ.
3. Delete any equation yi = si where yi is equal to one of the xj in θ.

Example: θ = {x = f(y), y = z}, δ = {x = a, y = b, z = y}
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Composition of Substitutions

• The empty substitution ε = {} is also a substitution, and it acts as an identity undercomposition.

• Substitutions when applied to formulas are associative:
(fθ)δ = f(θδ)
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Unifiers

A unifier of two formulas f and g is a substitution δ that makes f and g syntactically identical.
Not all formulas can be unified since substitutions only a�ect variables.

Example:

P (f(x), aaa) P (y, f(w))

This pair cannot be unified as there is no way of making aaa = f(w) with a substitution.
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Most General Unifier (MGU)
A substitution δ of two formulas f and g is a Most General Unifier (MGU) if:

1. δ is a unifier.
2. For every other unifier θ of f and g there exist a third substitution λ such that

θ = δλ

That is, every other unifier is more specialized than δ.The MGU of a pair of formulas f and g is unique up to renaming.

The MGU is the “least specialized” way of making clauses with universal variables match.
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MGU: Example
P (f(x), z) P (y,aaa)

δ = {y = f(aaa), x = aaa, z = aaa} is a unifier. But it is not an MGU.

P (f(x), z)δ =

P (y,aaa)δ =

θ = {y = f(x), z = aaa} is an MGU.

P (f(x), z)θ =

P (y,aaa)θ =

δ = θλ, where λ = {x = aaa}
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Computing MGUs: Intuition

• We line up the two formulas and find the first sub-expression where they disagree.

• The pair of sub-expressions where they first disagree is called the disagreement set.

• The algorithm works by successively fixing disagreement sets until the two formulasbecome syntactically identical.
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Most General Unifier
To find the MGU of two formulas f and g.

1. k = 0; δ0 = {}; S0 = {f, g}.
2. REPEAT UNTIL no more disagreement:
3. Find disagreement set Dk = {e1, e2}.
4. IF e1 = V , where V is a variable,and e2 = t, where t is a term not containing V ,or vice-versa then:

• δk+1 = δk{V = t} # Compose the additional substitution
• Sk+1 = Sk{V = t} # Apply the additional substitution
• k = k + 1

5. ELSE unification is not possible.
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MGU - Example 1

Find the MGU of P (f(aaa), g(x)) and P (y, y):

δ0 = {};S0 = {P (f(aaa), g(x)) , P (y,y)}

D0 = {f(aaa), y}
δ1 = {y = f(aaa)};S1 = {P (f(aaa),g(x)) , P (f(aaa),f(aaa))}
D1 = {g(x), f(aaa)}
no unification possible!
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MGU - Example 1
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MGU - Example 2

δ0 = {}; S0 = {P (aaa, x, h(g(z))) , P (z, h(y), h(y))}

D0 = {aaa, z}
δ1 = {z = aaa}; S1 = {P (aaa,x, h(g(aaa))) , P (aaa,h(y), h(y))}
D1 = {x, h(y)}
δ2 = {z = aaa,x = h(y)};
S2 = {P (aaa,h(y), h(g(aaa))) ; P (aaa, h(y), h(y))}
D2 = {g(aaa), y}
δ3 = {z = aaa, x = h(y)}{y = g(aaa)}

= {z = aaa, x = h(g(aaa)), y = g(aaa)}
S3 = {P (aaa, h(g(aaa)), h(g(aaa))) ; P (aaa, h(g(aaa)), h(g(aaa)))}
No disagreement
⇒ δ = {z = aaa, x = h(g(aaa)), y = g(aaa)} is MGU
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⇒ δ = {z = aaa, x = h(g(aaa)), y = g(aaa)} is MGU
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MGU - Example 3

S0 = {P (x,x) , P (y, f(y))}

D0 = {x, y}
δ1 = {x = y}, S1 = {P (y,y) , P (y,f(y))}
D1 = {y, f(y)}
no unification possible!
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MGU - Example 3

S0 = {P (x,x) , P (y, f(y))}
D0 = {x, y}
δ1 = {x = y}, S1 = {P (y,y) , P (y,f(y))}
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no unification possible!



Resolution of Clauses with Variables

Consider two clauses:
(L,Q1, Q2, ..., Qk)

(¬M,R1, R2, ..., Rn)where there exists an MGU δ for L and M .

We apply δ to both clauses, resolve Lδ and ¬Mδ, and infer the new clause
(Q1δ,Q2δ, ..., Qkδ,R1δ, R2δ, ..., Rnδ)
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Resolution of Clauses with Variables: Example
(P (x), Q(g(x)))

(R(aaa), Q(z),¬P (aaa))

L = P (x),M = P (aaa)

δ = {x = aaa}

R[1a, 2c]{x = aaa}(Q(g(aaa)), R(aaa), Q(z))
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Resolution of Clauses with Variables: Example
(P (x), Q(g(x)))

(R(aaa), Q(z),¬P (aaa))

L = P (x),M = P (aaa)

δ = {x = aaa}

R[1a, 2c]{x = aaa}(Q(g(aaa)), R(aaa), Q(z))

The notation is important. You will need to use this notation on the exam!
• R: resolution step.
• 1a: the first (a-th) literal in the first clause; i.e. P (x).
• 2c: the third (c-th) literal in the second clause; i.e., ¬P (aaa).

– 1a and 2c are the clashing literals.
• {x = a}: the substitution applied to make the clashing literals identical.
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Resolution Proof: Example

Some patients like all doctors.No patient likes any quack.
Prove: No doctor is a quack.

Step 1: Pick a vocabulary for representing these assertions.
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Resolution Proof: Example

Some patients like all doctors.No patient likes any quack.
Prove: No doctor is a quack.
Step 1: Pick a vocabulary for representing these assertions.

P (x): x is a patient.
D(x): x is a doctor.
Q(x): x is a quack.
L(x, y): x likes y.
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Resolution Proof: Example

Some patients like all doctors.No patient likes any quack.
Prove: No doctor is a quack.

Step 2: Convert each assertion to a first-order formula.
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Resolution Proof: Example

Some patients like all doctors.No patient likes any quack.
Prove: No doctor is a quack.
Step 2: Convert each assertion to a first-order formula.

F1 : ∃x[P (x) ∧ ∀y[D(y) → L(x, y))]]
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Some patients like all doctors.No patient likes any quack.
Prove: No doctor is a quack.
Step 2: Convert each assertion to a first-order formula.
F1 : ∃x[P (x) ∧ ∀y[D(y) → L(x, y))]]

F2 : ∀x∀y[(P (x) ∧Q(y)) → ¬L(x, y)]
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Resolution Proof: Example

Some patients like all doctors.No patient likes any quack.
Prove: No doctor is a quack.
Step 2: Convert each assertion to a first-order formula.
F1 : ∃x[P (x) ∧ ∀y[D(y) → L(x, y))]]

F2 : ∀x∀y[(P (x) ∧Q(y)) → ¬L(x, y)]

Query: ∀x[D(x) → ¬Q(x)]
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Resolution Proof: Example
Step 3: Convert to Clausal form.
F1 : ∃x[P (x) ∧ ∀y[D(y) → L(x, y))]]
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Resolution Proof: Example
F2 : ∀x∀y[(P (x) ∧Q(y)) → ¬L(x, y)]

Negation of Query:
¬(∀x[D(x) → ¬Q(x)])
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Resolution Proof: Example
Step 4: Resolution Proof from the Clauses.

1. P (aaa)

2. (¬D(y), L(aaa, y))

3. (¬P (x),¬Q(y),¬L(x, y))

4. D(bbb)

5. Q(bbb)
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Step 4: Resolution Proof from the Clauses.

1. P (aaa)

2. (¬D(y), L(aaa, y))

3. (¬P (x),¬Q(y),¬L(x, y))

4. D(bbb)

5. Q(bbb)

6. R[3b, 5]{y = bbb} (¬P (x),¬L(x,bbb))
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3. (¬P (x),¬Q(y),¬L(x, y))

4. D(bbb)

5. Q(bbb)

6. R[3b, 5]{y = bbb} (¬P (x),¬L(x,bbb))

7. R[6a, 1]{x = aaa} ¬L(a, ba, ba, b)
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Resolution Proof: Example
Step 4: Resolution Proof from the Clauses.

1. P (aaa)

2. (¬D(y), L(aaa, y))

3. (¬P (x),¬Q(y),¬L(x, y))

4. D(bbb)

5. Q(bbb)

6. R[3b, 5]{y = bbb} (¬P (x),¬L(x,bbb))

7. R[6a, 1]{x = aaa} ¬L(a, ba, ba, b)

8. R[7, 2b]{y = bbb} ¬D(bbb)
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Resolution Proof: Example
Step 4: Resolution Proof from the Clauses.

1. P (aaa)

2. (¬D(y), L(aaa, y))

3. (¬P (x),¬Q(y),¬L(x, y))

4. D(bbb)

5. Q(bbb)

6. R[3b, 5]{y = bbb} (¬P (x),¬L(x,bbb))

7. R[6a, 1]{x = aaa} ¬L(a, ba, ba, b)

8. R[7, 2b]{y = bbb} ¬D(bbb)

9. R[8, 4] ()

CSC384 | University of Toronto 44



Answer Extraction
• The previous example shows how we can answer Yes-No questions.
• With a bit more e�ort we can also answer “fill-in-the-blanks” questions:

– Use free variables in the query where we want the fill in the blanks.
– Keep track of the binding that these variables received in proving the query.
parent(art, jonart, jonart, jon) – is art one of jon’s parents?
parent(x,jonjonjon) - who is one of jon’s parents?

– A simple bookkeeping device is to use a predicate symbol answer(x, y, ...) tokeep track of the bindings automatically.
Example: To answer parent(x,jonjonjon), construct the clause:

(¬parent(x,jonjonjon), answer(x))

Then perform resolution until obtain a clause consisting of only answer literals(previously we stopped at empty clauses).
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Answer Extraction: Example 1

1. father(art, jonart, jonart, jon)

2. father(bob, kimbob, kimbob, kim)

3. (¬father(y, z), parent(y, z)) (all fathers are parents)

4. (¬parent(x,jonjonjon), answer(x)) (who is parent of jon?)
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Answer Extraction: Example 1
1. father(art, jonart, jonart, jon)

2. father(bob, kimbob, kimbob, kim)

3. (¬father(y, z), parent(y, z)) (all fathers are parents)
4. (¬parent(x,jonjonjon), answer(x)) (who is parent of jon?)

5. R[4, 3b] {y = x, z = jonjonjon} (¬father(x,jonjonjon), answer(x))

6. R[5, 1] {x = artartart} answer(artartart)
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Answer Extraction: Exercise
Answer the following query (Sentence 4) using the information provided by Sentences 1-3.

1. Either bob or art is father of jon.

2. bob is father of kim.

3. All fathers are parents.

4. Who is parent of jon?
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Answer Extraction: Example 2

Answer the following query (Sentence 4) using the information provided by Sentences 1-3.
1. Whoever can read is literate.
2. Dolphins are not literate.
3. Flipper is an intelligent dolphin.
4. Who is intelligent but cannot read?
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Answer Extraction: Example 2
Whoever can read is literate. ∀x[read(x) → lit(x)]

Dolphins are not literate. ∀x[dolp(x) → ¬lit(x)]

Flipper is an intelligent dolphin. dolp(flipflipflip) ∧ intell(flipflipflip)

Who is intelligent but cannot read?
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Answer Extraction: Example 2
Whoever can read is literate. ∀x[read(x) → lit(x)]

Dolphins are not literate. ∀x[dolp(x) → ¬lit(x)]

Flipper is an intelligent dolphin. dolp(flipflipflip) ∧ intell(flipflipflip)

Who is intelligent but cannot read?
Whoever that is intelligent but cannot read is the answer
∀x[(intell(x) ∧ ¬read(x)) → answer(x)]
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Answer Extraction: Example 2
1. (¬read(x), lit(x))

2. (¬dolp(x),¬lit(x))

3. dolp(flipflipflip)

4. intell(flipflipflip)

5. (¬intell(x), read(x), answer(x))
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Answer Extraction: Example 2
1. (¬read(x), lit(x))

2. (¬dolp(x),¬lit(x))

3. dolp(flipflipflip)

4. intell(flipflipflip)

5. (¬intell(x), read(x), answer(x))

6. R[5a, 4] {x = flipflipflip} (read(flipflipflip), answer(flipflipflip))

7. R[6, 1a] {x = flipflipflip} (lit(flipflipflip), answer(flipflipflip))

8. R[7, 2b] {x = flipflipflip} (¬dolp(flipflipflip), answer(flipflipflip))

9. R[8, 3] answer(flipflipflip)
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