
CSC384
Knowledge Representation

Part 1

Bahar Aameri & Sonya Allin

Winter 2020



Credits

These slides are drawn from or inspired by a multitude of sources including :

Yongmei LiuFaheim BacchusMichael WinterHector Levesque

CSC384 | University of Toronto 2



Introduction
What is Knowledge Representation and Reasoning (KR&R)?Symbolic encoding of propositions believed by some agent and their manipulation to producepropositions that are believed by the agent but not explicitly stated.

Why KR&R:

• Large amounts of knowledge are used to understand the world around us.
• Reasoning provides compression in the knowledge we need to store.
• Without reasoning we would have to store an infeasible amount of information:

Example: Elephants can’t fit into teacups, Elephants can’t fit into cars, instead of justknowing that larger objects can’t fit into smaller objects.
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Introduction

• Information:(1) Block A is above block B;(2) Block B is above block C.

• Query: Is A above C?

Given the information, human can easily draw the conclusion.How can a machine do the same?
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Introduction
• Tony, Mike, and John are members of the Alpine Club.
• Every member of the Alpine Club who is not a skier is a mountain climber.
• Mountain climbers do not like rain, and anyone who does not like snow is not a skier.
• Mike dislikes whatever Tony likes, and likes whatever Tony dislikes.
• Tony likes rain and snow.
• Is there a member of the Alpine Club who is a mountain climber but not a skier?
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Logical Representations for KR
Logical representations

• are mathematically precise; thus it’s possible to analyze their limitations, properties,and complexity of inferences.
• are formal languages; thus computer programs can manipulate sentences in the lan-guage.
• typically, have well-developed proof theories: formal procedures for reasoning to pro-duce new sentences.

In this module we will study First-Order logic (FOL), and a reasoning mechanism called reso-

lution that operates on First-Order logic.
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Review: Propositional Logic – Syntax
Propositional Variable: A variable which takes only True or False as values.

The set of all propositional formulas is defined recursively as follows:
• Every propositional variable is a propositional formula;
• If ϕ is a propositional formula, then so is ¬ϕ;
• If ϕ1 and ϕ2 are propositional formulas, then so are

– ϕ1 ∧ ϕ2 (Conjunction);
– ϕ1 ∨ ϕ2 (Disjunction);
– ϕ1 → ϕ2 (Implication);
– ϕ1 ↔ ϕ2 (Bi-implication).
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Review: Propositional Logic – Semantic
Truth Assignment: A function τ from the propositional variables into the set of truth values
{T, F}.

Let τ be a truth assignment. The extension τ̄ of τ assigns either T or F to every formula andis defined as follows:
• If A = x, where x is a variable, then τ̄(A) = τ(x).
• τ̄(¬A) = T i� τ̄(A) = F ;
• τ̄(A ∧B) = T i� τ̄(A) = T and τ̄(B) = T ;
• τ̄(A ∨B) = T i� τ̄(A) = T or τ̄(B) = T ;
• τ̄(A→ B) = F i� τ̄(A) = T and τ̄(B) = F .
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Review: Propositional Logic – Semantic
Example: Let V = {p, r, q} be a set of propositional variables and τ1 : V → {T, F} and
τ2 : V → {T, F} be two truth assignments s.t.:

• τ1(p) = T , τ1(q) = F , τ1(r) = F .
• τ2(p) = F , τ2(q) = T , τ2(r) = F .

Then
τ̄1((¬p ∧ q)→ r) =

τ̄2((¬p ∧ q)→ r) =
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Review: Propositional Logic – Semantic
A truth assignment τ satisfies a formula A i� τ̄(A) = T .
τ satisfies a set Φ of formulas i� τ satisfies all formula in Φ.
A set Φ of formulas is satisfiable i� some truth assignment τ satisfies Φ.Otherwise, Φ is unsatisfiable.

Example:
Φ1 = {r → (p ∧ q),¬p}

Φ2 = {r → (p ∧ q), r ∧ ¬p}
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Review: Propositional Logic – Semantic

A formula A is a logical consequence of Φ (denoted by Φ |= A) i� for every truth assignment
τ , if τ satisfies Φ, then τ satisfies A.

Example: Let Φ = {r → ((p ∧ q) ∨ s), r ∧ p}.

Then Φ |=
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Limitations of Propositional Language
• Only Boolean variables: Without non-Boolean variables cross references between

individuals in statements are impossible.
Example: ’If a person has a sibling and that sibling has a child, then the person is anaunt or an uncle.’
S: a person has a sibling.
C: a sibling has a child.
A: a person is an aunt or an uncle.
S ∧ C → A

This approach doesn’t work:
person in S and A are not related.
sibling in S and C are not related.

• No quantifiers: To state a property for all (or some) members of the domain we haveto explicitly list them.
Example: ’Every member of the Alpine Club who is not a skier is a mountain climber’
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First-Order Logic: Syntax
For first-order logic following components are required:

• A set V of variables.
• A set F of function symbols.
• A set P of predicate (relation) symbols.

• Functions and variables are used to construct terms.
• Predicates are defined over terms.
• Predicates and terms are used to construct formulas.

A set L of function and predicate symbols is called a first-order vocabulary.
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First-Order Logic: Intuition

• Terms (variables and functions) denote elements of the domain.

• Atomic formulas denote properties and relations that hold about the elements in thedomain.

• Other formulas generate more complex assertions by composing atomic formulas.
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First-Order Logic: Syntax

Let L be a set of function and predicate symbols.
1. Every variable is a term.
2. If f is an n-ary function symbol in L and t1, t2, ..., tn are L-terms, then f(t1, t2, ..., tn)is a L-term.

Note: 0-ary functions symbols are called constant symbols.
Example:
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First-Order Logic: Syntax
Let L be a vocabulary. The set of first-order L-formulas is defined recursively:
1. Atomic Formula: P (t1, t2, ..., tn), whereP is ann-ary predicate symbol inL and t1, t2, ..., tnare L-terms.

2. Negation: ¬f , where f is a L-formula.

3. Conjunction: f1 ∧ f2 ∧ ... ∧ fn, where f1, f2, ..., fn are L-formulas.

4. Disjunction: f1 ∨ f2 ∨ ... ∨ fn, where f1, f2, ..., fn are L-formulas.

5. Implication: f1 → f2, where f1, f2 are L-formulas.

6. Existential: ∃xf , where x is a variable and f is a L-formula.

7. Universal: ∀xf , where x is a variable and f is a L-formula.
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Converting English to First-Order Language
• Individuals: Constants (0-ary Functions)

– tony, mike, john
rain, snow

• Types: Unary Predicates
– AC(x): x belongs to Alpine Club.
– S(x): x is a skier.
– C(x): x is a mountain climber.

• Relationships: Binary Predicates
– L(x, y): x likes y.
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Converting English to First-Order Language
• Basic Facts:

– Tony, Mike, and John belong to the Alpine Club:
AC(tony), AC(mike), AC(john)

– Tony likes rain and snow:
L(tony, rain), L(tony, snow)

• Complex Facts:
– Every member of the Alpine Club who is not a skier is a mountain climber.

– Mountain climbers do not like rain, and anyone who does not like snow is not askier.
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Converting English to First-Order Language

– Mike dislikes whatever Tony likes, and likes whatever Tony dislikes.

– Is there a member of the Alpine Club who is a mountain climber but not a skier?
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First-Order Logic: Syntax

Like variables in programming languages, the variables in FOL have a scope which is deter-mined by the quantifiers.Lexical scope for variables:
Animal(x) ∧ ∃x[Human(x) ∨Women(x)] .

∃x[Animal(x)→ ¬Human(x)] ∧ ∃x[Human(x) ∨Women(x)]
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First-Order Logic: Semantic
• In the propositional logic, a truth assignment provides meaning to a formula.

• In FOL we can talk about (non-Boolean) individuals and elements.So the simple universe of truth values is not rich enough to provide a suitable interpre-tation for FOL formulas.

• We need more more complicated objects to give meaning to formulas and terms.

• These objects are called structures.
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First-Order Structures
Let L be a first-order vocabulary. An L-structureM consists of the following:

1. A nonempty set M called the universe (domain) of discourse.

2. For each n-ary function symbol f ∈ L, an associated function fM : Mn →M .
Note: If n = 0, then f is a constant symbol and fM is simply an element of M .
fM is called the extension of the function symbol f inM.

3. For each n-ary predicate symbol P ∈ L, an associated relation PM ⊆Mn.
PM is called the extension of the predicate symbol P inM.
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First-Order Structures: Example

Blocks World:

Suppose LBW includes the following symbols:
• Function Symbols:- under(x): the block immediately under x if x is not on table; x itself otherwise.
• Predicate Symbols:- on(x, y): x is place (directly) on y.- above(x, y): x is above y.- clear(x): no blocks are above x.- ontable(x): no blocks are under x.
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Suppose LBW includes the following symbols:
• Function Symbols:- under(x): the block immediately under x if x is not on table; x itself otherwise.
• Predicate Symbols:- on(x, y): x is place (directly) on y.- above(x, y): x is above y.- clear(x): no blocks are above x.- ontable(x): no blocks are under x.

M1 is a LBW -structure such that:
M1 = {A,B,C,D}
onM1 = {〈A,B〉, 〈B,C〉}
aboveM1 = {〈A,B〉, 〈B,C〉, 〈A,C〉}
clearM1 = {A,D}
ontableM1 = {C,D}
underM1 (A) = B, underM1 (B) = C,
underM1 (C) = C, underM1 (D) = D
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Suppose LBW includes the following symbols:
• Function Symbols:- under(x): the block immediately under x if
x is not on table; x itself otherwise.

• Predicate Symbols:- on(x, y): x is place (directly) on y.- above(x, y): x is above y.- clear(x): no blocks are above x.- ontable(x): x is placed on the table.

Represent the following configuration by a LBW -structure.
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Semantic of First-Order Logic: Intuition
Every L-formula becomes either true or false when interpreted by an L-structureM.
That is, the truth value of a first-order formulas A is evaluated w.r.t to a first-order structure
M:

• Terms (variables and functions) of a formula denote elements of the domain.So every term in A must correspond with an element of the universe ofM.
• Atomic formulas denote properties and relations that hold about the elements in thedomain.
P (t1, ..., tn) is true inM if t1, ..., tn are related to each other by PM.

• Other formulas generate more complex assertions by composing atomic formulas.Their truth is dependent on the truth of the atomic formulas in them.

CSC384 | University of Toronto 27



Semantic of First-Order Logic: Variable Assignments
LetM be a structure andX be a set of variables. An object assignment σ forM is a mappingfrom variables in X to the universe ofM.

X = {v1, v2, v3, v4}

σ(v1) = D, σ(v2) = C

σ(v3) = B, σ(v4) = A
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Semantic of First-Order Logic: Variable Assignments
Remember the recursive definition of term:Let L be a set of function and predicate symbols.

1. Every variable x is a term.
2. If f is an n-ary function symbol in L and t1, t2, ..., tn are L-terms, then f(t1, t2, ..., tn)is a L-term.

Let L be a vocabulary andM be an L-structure.The extension σ̄ of σ is defined recursively:
1. for every variable x, σ̄(x) = σ(x);
2. for every function symbol f ∈ L, σ̄(f(t1, ..., tn)) = fM(σ̄(t1), ..., σ̄(tn)).
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Semantic of First-Order Logic: Variable Assignments
Let L be a vocabulary andM be an L-structure.The extension σ̄ of σ is defined recursively:

1. for every variable x, σ̄(x) = σ(x);
2. for every function symbol f ∈ L, σ̄(f(t1, ..., tn)) = fM(σ̄(t1), ..., σ̄(tn)).

underM(A) = B underM(B) = C

underM(C) = C underM(D) = D

X = {v1, v2, v3, v4}
σ(v1) = D, σ(v2) = C

σ(v3) = B, σ(v4) = A

σ̄(under(under(v4))) =
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First-Order Logic Semantic: Models (Interpretations)
For an L-formula A,M |= A[σ] (M satisfies A under σ, orM is a model of A under σ) isdefined recursively on the structure of A as follows:

M |= P (t1, ..., tn)[σ] i� 〈σ̄(t1), ..., σ̄(tn)〉 ∈ PM.

M |= (s = t)[σ] i� σ̄(s) = σ̄(t).

M |= ¬A[σ] i� M 6|= A[σ].

M |= (A ∨B)[σ] i� M |= A[σ] orM |= B[σ].

M |= (A ∧B)[σ] i� M |= A[σ] andM |= B[σ].

M |= (∀xA)[σ] i� M |= A[σ(m/x)] for all m ∈M.

M |= (∃xA)[σ] i� M |= A[σ(m/x)] for some m ∈M.
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First-Order Logic Semantic: Models (Interpretations)
For an L-formula A,M |= A[σ] (M satisfies A under σ, orM is a model of A under σ) isdefined recursively on the structure of A as follows:

M |= P (t1, ..., tn)[σ] i� 〈σ̄(t1), ..., σ̄(tn)〉 ∈ PM.

M |= (s = t)[σ] i� σ̄(s) = σ̄(t).

M |= ¬A[σ] i� M 6|= A[σ].

M |= (A ∨B)[σ] i� M |= A[σ] orM |= B[σ].

M |= (A ∧B)[σ] i� M |= A[σ] andM |= B[σ].

M |= (∀xA)[σ] i� M |= A[σ(m/x)] for all m ∈M.

M |= (∃xA)[σ] i� M |= A[σ(m/x)] for some m ∈M.

Note: σ(m/x) is a object variable assignment function. Exactly like σ, but maps the variable
x to the individual m ∈M . That is:
For y 6= x : σ(m/x)(y) = σ(y)

For x: σ(m/x)(x) = σ(m)
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Models: Example

LetM3 be a structure such that:
M3 = {A,B,C,D}
onM3 = {〈A,B〉, 〈B,C〉}
aboveM3 = {〈A,B〉, 〈B,C〉, 〈A,C〉}
clearM3 = {A,D}
ontableM3 = {C,D}

DoesM3 satisfy
∀x∀y(on(x, y)→ above(x, y))
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LetM3 be a structure such that:
M3 = {A,B,C,D}
onM3 = {〈A,B〉, 〈B,C〉}
aboveM3 = {〈A,B〉, 〈B,C〉, 〈A,C〉}
clearM3 = {A,D}
ontableM3 = {C,D}

DoesM3 satisfy
∀x∀y(above(x, y)→ on(x, y))
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LetM3 be a structure such that:
M3 = {A,B,C,D}
onM3 = {〈A,B〉, 〈B,C〉}
aboveM3 = {〈A,B〉, 〈B,C〉, 〈A,C〉}
clearM3 = {A,D}
ontableM3 = {C,D}

DoesM3 satisfy
∀x∃y(clear(x) ∨On(y, x))
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LetM3 be a structure such that:
M3 = {A,B,C,D}
onM3 = {〈A,B〉, 〈B,C〉}
aboveM3 = {〈A,B〉, 〈B,C〉, 〈A,C〉}
clearM3 = {A,D}
ontableM3 = {C,D}

DoesM3 satisfy
∃y∀x(clear(x) ∨On(y, x))
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First-Order Logic Semantic: Models
An occurrence of x in A is bound i� it is in a sub-formula of A of the form ∀xB or ∃xB.Otherwise the occurrence is free.
Example:
P (x) ∧ ∃x[P (x) ∨Q(x)]

In a structureM, formulas with free variables might be true for some object assignments tothe free variables and false for others.
Example: Consider the formula P (x, y) ∧ P (y, x) and the following structureM:
M = {a, b} PM = {〈a, a〉}
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First-Order Logic Semantic: Models
A formula A is closed if it contains no free occurrence of a variable.A closed formula is called a sentence.
Example:
P (x) ∧ ∃x[P (x) ∨Q(x)] .
∀xP (x) ∧ ∃x[P (x) ∨Q(x)]

If σ and σ′ agree on the free variables of A, thenM |= A[σ] i�M |= A[σ′].
Proof: Structural induction on A.

Corollary: If A is a sentence, then for any object assignments σ and σ′,
M |= A[σ] i� M |= A[σ′]

So, if A is a sentence (no free variables), σ is irrelevant and we omit mention of σ and simply
writeM |= A.

CSC384 | University of Toronto 39



Logical Satisfiability

Let Φ be a set of sentences.

• M satisfies Φ (denoted byM |= Φ) if for every sentence A ∈ Φ,M |= A.

• IfM |= Φ, we sayM is a model of Φ.

• We say that Φ is satisfiable if there is a structureM such thatM |= Φ.
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Models of Logical Sentences: Example
Let Φ1 be a set containing the following sentences(c1, c2c1, c2c1, c2 are constant symbols, we use bold font to distinguish constant symbols from variables):

• on(c1, c2c1, c2c1, c2)• clear(c1c1c1)• above(c1, c2c1, c2c1, c2)Construct two models of Φ1 with size three (i.e., the size of the domain of each model mustbe three).

M1 = {A,B,C}

c1c1c1M1 = A c2c2c2M1 = B

onM1 = {〈A,B〉, 〈B,C〉}

clearM1 = {A,C}

aboveM1 = {〈A,B〉}
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Models of Logical Sentences: Practice Question
Let Φ2 be a set containing the following sentences(c1, c2c1, c2c1, c2 are constant symbols):

• ∀x(clear(x)→ ¬∃y(on(y, x)))

• ∀x∀y(on(x, y)→ above(x, y))

• ∀x∀y∀z((above(x, y) ∧ above(y, z))→ above(x, z))

• on(c1, c2c1, c2c1, c2)

• clear(c1c1c1)

• above(c1, c2c1, c2c1, c2)

Construct two models of Φ2 with size three (i.e., the size of the domain of each model must
be three).
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Logical Satisfiability: Practice Question

Example: is {∀x(P (x)→ Q(x)), P (a),¬Q(a)} satisfiable?
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