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Introduction

What is Knowledge Representation and Reasoning (KR&R)?

Symbolic encoding of propositions believed by some agent and their manipulation to produce
propositions that are believed by the agent but not explicitly stated.

Why KR&R:

+ Large amounts of knowledge are used to understand the world around us.
* Reasoning provides compression in the knowledge we need to store.
* Without reasoning we would have to store an infeasible amount of information:

Example: Elephants can't fit into teacups, Elephants can’t fit into cars, instead of just
knowing that larger objects can’t fit into smaller objects.
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Introduction

» Information:
(1) Block A is above block B;
(2) Block B is above block C.

* Query: Is A above C?

Given the information, human can easily draw the conclusion.
How can a machine do the same?
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Introduction

» Tony, Mike, and John are members of the Alpine Club.

» Every member of the Alpine Club who is not a skier is a mountain climber.

* Mountain climbers do not like rain, and anyone who does not like snow is not a skier.
« Mike dislikes whatever Tony likes, and likes whatever Tony dislikes.

* Tony likes rain and snow.

» Is there a member of the Alpine Club who is a mountain climber but not a skier?
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Logical Representations for KR

Logical representations

« are mathematically precise; thus it’s possible to analyze their limitations, properties,
and complexity of inferences.

« are formal languages; thus computer programs can manipulate sentences in the lan-
guage.

« typically, have well-developed proof theories: formal procedures for reasoning to pro-
duce new sentences.

In this module we will study First-Order logic (FOL), and a reasoning mechanism called reso-

lution that operates on First-Order logic.
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Review: Propositional Logic — Syntax

Propositional Variable: A variable which takes only True or False as values.

The set of all propositional formulas is defined recursively as follows:
» Every propositional variable is a propositional formula;
+ If ¢ is a propositional formula, then so is —;
» If 1 and o2 are propositional formulas, then so are
- 1 A p2 (Conjunction);
- 1 V 2 (Disjunction);
- 1 — o2 (Implication);

- 1 <> p2 (Bi-implication).
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Review: Propositional Logic — Semantic

Truth Assignment: A function 7 from the propositional variables into the set of truth values
{T,F}.

Let 7 be a truth assignment. The extension 7 of 7 assigns either T" or F' to every formula and
is defined as follows:

» If A =z, where x is a variable, then 7(A) = 7(x).
« F(mA)=TIiffF(A) = F;

* F(AANB)=TIiffF(A)=Tand 7#(B) = T;

« 7(AV B)=Tiff 7(A) =T or 7(B) = T;

« 7(A— B) = Fiff 7(A) = T and 7(B) = F.
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Review: Propositional Logic — Semantic

Example: Let V = {p,r, ¢} be a set of propositional variables and  : V" — {T, F} and
79 : V — {T, F} be two truth assignments s.t.:

e i(p)=T,711(q) =F, 71(r) = F.

e mo(p) =F,m2(q) =T, m2(r) = F.

Then

ﬁ((g)/\g}%r):r
For

ﬁ((ltg/\&l) %1;)2 ?
T T F_
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Review: Propositional Logic — Semantic

A truth assignment 7 satisfies a formula A iff 7(A) = T.
7 satisfies a set ® of formulas iff 7 satisfies all formula in ®.

A set ® of formulas is satisfiable iff some truth assignment 7 satisfies ®.
Otherwise, ® is unsatisfiable.

Example:

<I>1:{TI—>(I\71/\Q)7_‘P} T (r) E T(P)=F T(q)=T
LY
£

By = {r = (pAdlr A p) ed L)

1,/ P ‘I/ ) Mf\sa‘hSLo-‘o&

.r ¥ T T

CSC384 | University of Toronto 10













































































































































































































































Review: Propositional Logic — Semantic

A formula A is a logical consequence of ® (denoted by ® |= A) iff for every truth assignment
T, if 7 satisfies @, then 7 satisfies A.

T of T
Example: Letcb:{ia(p/\q Vg)',z/\p}. P'\q:T g q=_r
T T T T
] O{
Then@):qu S =
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Limitations of Propositional Language

* Only Boolean variables: Without non-Boolean variables cross references between
individuals in statements are impossible.
Example: 'If a person has a sibling and that sibling has a child, then the person is an
aunt or an uncle.’
S: a person has a sibling.
C': a sibling has a child.
A: a person is an aunt or an uncle.

SANC — A

This approach doesn’t work:
person in S and A are not related.
sibling in S and C are not related.

* No quantifiers: To state a property for all (or some) members of the domain we have
to explicitly list them.
Example: 'Every member of the Alpine Club who is not a skier is a mountain climber’
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First-Order Logic: Syntax

For first-order logic following components are required:
* Aset V of variables.
* A set F of function symbols.

» A set P of predicate (relation) symbols.

* Functions and variables are used to construct terms.

* Predicates are defined over terms.

* Predicates and terms are used to construct formulas.

A set £ of function and predicate symbols is called a first-order vocabulary.
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First-Order Logic: Intuition

« Terms (variables and functions) denote elements of the domain.

* Atomic formulas denote properties and relations that hold about the elements in the
domain.

« Other formulas generate more complex assertions by composing atomic formulas.
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First-Order Logic: Syntax

Let £ be a set of function and predicate symbols.
1. Every variable is a term.

2. If fis an n-ary function symbol in £ and t1, ta, ..., t, are L-terms, then f(t1,t2,...,tn)
isa L-term.

Note: 0-ary functions symbols are called constant symbols.

Example:
o, gq(~))
‘TL(CH C'L) s C o\r\t‘} Cq ofe ConS tants
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First-Order Logic: Syntax

Let £ be a vocabulary. The set of first-order £-formulas is defined recursively:

1. Atomic Formula: P(t1,t2, ..., tn), Where Pis ann-ary predicate symbolin Land ¢1, ta, ..., tn

are L-terms.

2. Negation: —f, where f is a £L-formula.

3. Conjunction: fi A fa A ... A fn, where f1, fa, ..., frn are L-formulas.

4. Disjunction: f1 V fo V...V fn, where f1, fo, ..., fn are L-formulas.

5. Implication: f; — f2, where fi, f> are L-formulas.

6. Existential: 3z f, where z is a variable and f is a £-formula.

7. Universal: Vz f, where z is a variable and f is a £-formula.
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Converting English to First-Order Language

« Individuals: Constants (0-ary Functions)

- tony, mike, john
rain, snow

* Types: Unary Predicates
- AC(z): z belongs to Alpine Club.
- S(x): zis a skier.
- C(z): x is a mountain climber.

« Relationships: Binary Predicates

- L(z,y): = likes y.
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Converting English to First-Order Language

* Basic Facts:

- Tony, Mike, and John belong to the Alpine Club:
AC((tony), AC(mike), AC(john)

— Tony likes rain and snow:
L(tony, rain), L(tony, snow)

* Complex Facts:

- Every member of the Alpine Club who is not a skier is a mountain climber.
¥ T Acta) A 1S ()= €00 ]

— Mountain climbers do not like rain, and anyone who does not like snow is not a
—
skier.

o] Coxy —> 1L win)] A N T LG s5me) 5750
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Converting English to First-Order Language

- Mike dislikes whatever Tony likes, and likes whatever Tony dislikes.

\fxf L (tory, 9 = TL (mike, ) A b‘x[‘lL(tM,x) -
L(’“"Keal) ]

- Is there a member of the Alpine Club who is a mountain climber but not a skier?

T Acx)A COM) A 1S(0) |
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First-Order Logic: Syntax

Like variables in programming languages, the variables in FOL have a scope which is deter-
mined by the quantifiers.
Lexical scope for variables:
Animal(z) A Jz[Human(z) V Women(x)] ;
|

Jz[Animal(z) — ~Human(z)] A z[Human(z) V Women(z)]
- J T 1
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First-Order Logic: Semantic

» Inthe propositional logic, a truth assignment provides meaning to a formula.

» In FOL we can talk about (non-Boolean) individuals and elements.
So the simple universe of truth values is not rich enough to provide a suitable interpre-
tation for FOL formulas.

* We need more more complicated objects to give meaning to formulas and terms.

* These objects are called structures.
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First-Order Structures

Let £ be a first-order vocabulary. An £-structure M consists of the following:
1. A nonempty set M called the universe (domain) of discourse.

2. For each n-ary function symbol f € £, an associated function fM : M™ — M.
Note: If n = 0, then f is a constant symbol and f™ is simply an element of M.
fM is called the extension of the function symbol f in M.

3. For each n-ary predicate symbol P € £, an associated relation PM C M™.
PM is called the extension of the predicate symbol P in M.
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First-Order Structures: Example

Blocks World:

Suppose Lgw includes the following symbols:
* Function Symbols:
- under(x): the block immediately under z if = is not on table; z itself otherwise.
* Predicate Symbols:
- on(z,y): = is place (directly) on y.
- above(z,y): x is above y.
- clear(z): no blocks are above z.
- ontable(z): no blocks are under z.
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Suppose Lpgw includes the following symbols:
* Function Symbols:

* Predicate Symbols:
- on(z,y): z is place (directly) on y.
- above(z, y): z is above y.
- clear(z): no blocks are above z.
- ontable(z): no blocks are under z.

- under(x): the block immediately under « if = is not on table; z itself otherwise.

My is a Lpw-structure such that:
M = {A, B,C, D}

on™1 = {(A, B), (B,C)}

aboveM1 = {(A, B), (B, C), (A, C)}
clear™1 = {A D}

ontable™M1 = {C, D}

under™1 (A) = B, under™1(B) = C,
under™1 (C) = C, under™1 (D) = D

Fl=1t)
g
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Suppose Lpgyw includes the following symbols:

* Function Symbols:
- under(z): the block immediately under z if
z is not on table; z itself otherwise.

* Predicate Symbols:
- on(z,y): = is place (directly) on y.
- above(z,y): x is above y.
- clear(z): no blocks are above z.
- ontable(z): x is placed on the table.

M, .
M2=§A,@, ¢,0}

M"'__z {B,¢ >}
o\‘oove _ g { R, (.}R({

Represent the following configuration by a £y -structure.

Cleay _gA R, D}

O/H'au\o\f { A C’D}
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M
w.,,le/ Z(A) ‘-A

M
undes Q(C) = C

UW\aLCfM‘L( @ ) = C

um}eIM—L(D): D
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Semantic of First-Order Logic: Intuition

Every L£-formula becomes either true or false when interpreted by an £-structure M.

That is, the truth value of a first-order formulas A is evaluated w.r.t to a first-order structure
M:

« Terms (variables and functions) of a formula denote elements of the domain.
So every term in A must correspond with an element of the universe of M.

» Atomic formulas denote properties and relations that hold about the elements in the
domain.

P(t1,...,tn) is true in M if ty, ..., t,, are related to each other by PM.

« Other formulas generate more complex assertions by composing atomic formulas.
Their truth is dependent on the truth of the atomic formulas in them.
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Semantic of First-Order Logic: Variable Assignments

Let M be a structure and X be a set of variables. An object assignment o for M is a mapping
from variables in X to the universe of M.

X = {v1,v2,v3,v4}

o(vi) =D, o(v2) =C
o(vs) = B, o(va) = A
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Semantic of First-Order Logic: Variable Assignments

Remember the recursive definition of term:
Let £ be a set of function and predicate symbols.

1. Every variable x is a term.

isa L-term.

2. If fis an n-ary function symbol in £ and ¢1, ta, ..., tn, are L-terms, then f(t1,t2, ...

Let £ be a vocabulary and M be an L-structure.
The extension & of o is defined recursively:

1. for every variable z, 5(z) = o(z);

2. for every function symbol f € L, 5(f(t1,....tn)) = fM(E(t1), ..., 5(tn)).
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Semantic of First-Order Logic: Variable Assignments

Let £ be a vocabulary and M be an L-structure.
The extension & of o is defined recursively:

1. for every variable z, 6(z) = o(z);

2. for every function symbol f € L, 5(f(t1,....tn)) = FM(E(t1), ..., 5(tn)).

under™ (A)
under™(C)

under™ (B)

=B =C
=C under™ (D) = D

_{U17U27U37’U4} D D
o(v1 ; /7 ¢

o(vs) = Cb

M
& (under(under(vq))) = M.no(f./ ( |6 (U“}e{CVL‘)) ) UﬂﬂLc{ (B)ZC—
R
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6 (under(va))= nder

. -—G’CVQ) = G(VQ):A
¥

M

(6 (Vs)
L_T—J

):UM(CY A)
D

UT\_,(;;;























































































































































































































































First-Order Logic Semantic: Models (Interpretations)

For an L-formula A, M |= A[o] (M satisfies A under o, or M is a model of A under o) is
defined recursively on the structure of A as follows:

M Plts, o ta)o]
M (s = t)[o]

M = —Alo]
M (AV B)
ME (AN B)
M= (VzA)lo
M= (FzA)lo

o]

[
[o]
]
]

iff

iff
iff
iff
iff
iff
iff

(3(t1), .., 3(tn)) € PM.

M = Alo] or M = B[o].

M = Alo] and M |= Blo].

M = Alo(m/x)] for allm € M.
M = Alo(m/x)] for some m € M.
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First-Order Logic Semantic: Models (Interpretations)

For an L-formula A, M = Alo] (M satisfies A under o, or M is a model of A under o) is
defined recursively on the structure of A as follows:

M = P(ty, ... tn)o] iff
M= (s = t)[o] iff
M = —Alo] iff
M = (AV B)o] iff
M = (A A B)o] iff
M = (Vo A)[o] iff
M = (3zA)o] iff

(3(t1), ..., o (tn)) € PM.

o(s) =a(t).

M = Alo].

M E Alo] or M = Bo].

M = Alo] and M |= Blo].

M = Alo(m/z)] for allm € M.
M | Alo(m/z)] for some m € M.

Note: o(m/x) is a object variable assignment function. Exactly like o, but maps the variable

x to the individual m € M. That is:

Fory # a: a(m/z)(y) = o(y)
For z: o(m/z)(z) = o(m)
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Models: Example

Let M3 be a structure such that:
Ms ={A,B,C,D}

onMs = {(A, B),(B,C)}

aboveMs = {(A, B), (B,C), (A, C)}
clear™3s = {A, D}

ontableMs = {C, D}

Does M3 satisfy
VaVy(on(z,y) — above(z,y)) /
X=A A=AV
=RV

‘3-_c_\/
"():O‘/

v J
xR YA/ | A=C 2:=A [ %D 3:A
9:-RV “‘)’E ';)/=B
7
7):0’ ld =C

/ 7~
0=D 00| 90
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Let M3 be a structure such that:
M3 = {A,B7 C, D}

on™3 = {(A, B), (B,C)}

aboveMs = {(A, B),(B,C),(A,C)}
clear™s = {A,DF

ontableMs = {C, D}

Does M3 satisfy
VaVy(above(z,y) — on(z,y)) X

A=A J=C X
LA 2 CSE o\boveM3

M2
iA‘)C.>€: On

CSC384 [ University of Toronto

35































































































































Let M3 be a structure such that:
M3 - {Avach}
on™3 = {(A, B), (B,C)}

clear™s = {A, D}
ontableMs = {C, D}

aboveMs = {<A7 B>7 <B7 C>7 <A7 C>}

Does M3 satisfy

Vwﬂy(cl;ar(a:) Vv On(y, z)) \/
A< A 2 = A v
7. ‘3 'a:A v

a=¢ =RV
a <D '3=AI/
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Let M3 be a structure such that:
Ms = {A,B,C, D}

onMs = {(Av B), <B,C>}

aboveMs = {(A, B), (B,C), (A, C)}
clear™s = {A, D}

ontableMs = {C, D}

Does M3 satisfy
JyVz(clear(z) V On(y, z)) x

A-A n=c X

1:@ (X:B X
3:=C n=C X
U:D =D X
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First-Order Logic Semantic: Models

An occurrence of z in A is bound iff it is in a sub-formula of A of the form VzB or JzB.
Otherwise the occurrence is free.
Example:
P(z) A 3z[P(z) v Q(:v)]
| \s
Yre b,,.,.,.AeL

In a structure M, formulas with free variables might be true for some object assignments to
the free variables and false for others.

fr
Example: Consider the formula P(z,y) A P(y,x) and the following structure M:
M ={a,b}  PM ={(a,a)}

6 (%) e 6,(a)=00 MEALE]

6, (x)=c b2(3)=b MEFALS]
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First-Order Logic Semantic: Models

A formula A is closed if it contains no free occurrence of a variable.
A closed formula is called a sentence.

Example:

P(z) A Jz[P(z) V Q(z)] .

VaP(z) A Jz[P(z) V Q(z)]

If o and o’ agree on the free variables of A, then M = A[o] iff M = Alo’].
Proof: Structural induction on A.

Corollary: If A is a sentence, then for any object assignments o and o/,

MEAjs] i Mg Al

So, if A is a sentence (no free variables), o is irrelevant and we omit mention of o and simply
write M |= A.
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Logical Satisfiability

Let ® be a set of sentences.
* M satisfies ® (denoted by M = @) if for every sentence A € &, M = A.
« If M = @, we say M is a model of ®.

» We say that @ is satisfiable if there is a structure M such that M = ®.
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Models of Logical Sentences: Example

Let ®; be a set containing the following sentences
(e1, c2 are constant symbols, we use bold font to distinguish constant symbols from variables):

* on(c1,c2)
* clear(er)
* above(er, c2)
Construct two models of ®; with size three (i.e., the size of the domain of each model must

be three).

My = {A, B,C}
aMi=A M1 =B
on™1 = {(A, B), (B,C)}
clear™1 = {A, C}
above™1 = {(A, B)}
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Models of Logical Sentences: Practice Question

Let ®5 be a set containing the following sentences(c;, c2 are constant symbols):
* Va(clear(xz) — —3y(on(y,x)))
* VaVy(on(z,y) — above(z,y))
* VzVyVz((above(z, y) A above(y, z)) — above(z, z))
* onf(er,c2)
* clear(er)

* above(er, c2)

Construct two models of ®, with size three (i.e., the size of the domain of each model must

be three).

M2=€AJQJC—} CIMZ:—A C:‘Z=g

OAMI._€<A>5>: {B. Y]
C.I.&h/Mz:{ A:z(
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CA‘OchM7‘=§< ARY, IR, 5,4 A C-7—%
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Logical Satisfiability: Practice Question

Example: is {Vz(P(z) — Q(z)), P(a), ~Q(a)} satisfiable?
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