
CSC384
Constraint Satisfaction Problems

Part 2

Bahar Aameri & Sonya Allin

Winter 2020

Problems with Plain Backtracking

The backtracking searchwon’t detect that the (3,3) cell has no possible value until all variables
of the row/column/sub-square are assigned.

CSC384 | University of Toronto 2

Constraint Propagation
• In CSPs, there might be variables that have no possible value, but BT doesn’t detectthis until it tries to assign them a value.This leads to the idea of Constraint Propagation (or Domain Filtering).

Constraint Propagation: "looking ahead" at the yet unassigned variables in the search, tryingto detect obvious failures."Obvious" means things we can test/detect e�ciently.

• Even if it doesn’t detect an obvious failure, it might be possible to eliminate some
parts of the future search.

CSC384 | University of Toronto 3

Constraint Propagation

• Propagation has to be applied during the search; potentially at every node of thesearch tree.

• Propagation itself is an inference step that needs some resources (in particular, time).If propagation is slow, this can slow the search down to the point where using propa-gation makes finding a solution take longer!

• Two main types of propagation: Forward Checking and Generalized Arc Consistency.

CSC384 | University of Toronto 4

Constraint Propagation: Forward Checking
Forward Checking: An extension of backtracking search.Employs a modest amount of propagation (look ahead).

Intuition: When instantiating a variable V , do the following for all constraints C that haveonly one uninstantiated variable X remaining:
• Check all the values of X;
• Prune those values that violate C.

Undo the pruning when backtrack.

CSC384 | University of Toronto 5

Forward Checking – Example
Each of Q1, ..., Q4 denotes a queen per row.Forward checking prunes domains of Q1, ..., Q4 based on binary constraints over Q1, ..., Q4.

CSC384 | University of Toronto 6

CSC384 | University of Toronto 7

CSC384 | University of Toronto 8

CSC384 | University of Toronto 9

CSC384 | University of Toronto 10

CSC384 | University of Toronto 11

CSC384 | University of Toronto 12

CSC384 | University of Toronto 13

CSC384 | University of Toronto 14

CSC384 | University of Toronto 15

CSC384 | University of Toronto 16

CSC384 | University of Toronto 17

CSC384 | University of Toronto 18

CSC384 | University of Toronto 19

Forward Checking: The Algorithm

def FCCheck(C,X):
// C is a constraint with all its variables already
// assigned, except for variable X.
1. for d := each member of CurDom(X):
2. if making X = d together with previous assignments

to variables in the scope of C falsifies C:
3. remove d from CurDom(X)
4. if CurDom[X] == {}:
5. RETURN DWO # Domain Wipe Out
6. RETURN ok

CSC384 | University of Toronto 20

Forward Checking: The Algorithm
def FC(Level):
1. if all Variables assigned
2. PRINT Value of each Variable
3. EXIT or RETURN # EXIT for only one solution

RETURN for more solutions
4. V := PickUnassignedVariable()
5. Assigned[V] := TRUE
6. for d := each member of CurDom(V)
7. Value[V] := d
8. DWOoccured:= False
9. for each constraint C over V such that C has only one

unassigned variable X in its scope:
10. if FCCheck(C,X) == DWO: # X domain becomes empty
11. DWOoccurred:= True
12. BREAK # stop checking constraints
13. if NOT DWOoccured: # all constraints were ok
14. FC(Level+1)
15. RestoreAllValuesPrunedByFCCheck()
16. Assigned[V] := FALSE # UNDO as we have tried all of V’s values
17. RETURN

CSC384 | University of Toronto 21

Forward Checking: Restoring Values

• After we backtrack from the current assignment the values that were pruned (as aresult of that assignment) must be restored.

• Some bookkeeping needs to be done to remember which values were pruned by whichassignment.

CSC384 | University of Toronto 22

CSC384 | University of Toronto 23

CSC384 | University of Toronto 24

CSC384 | University of Toronto 25

BT vs FC: Time E�ciency
• The general class of CSPs are NP-complete.That is, their worst-case running time is exponential.

BTworst-case running time: O(dN), where d is the max size of a variable domain, and
N is the number of variables.

• But, typically, every NP-complete family contains large sub-classes of simpler prob-lems.
• The purpose of developing constraint propagation techniques, such as FC, is to solvethose simpler sub-classes faster.
• FC often is about 100 times faster than BT, but it can also do worse!

More on this:Bacchus, Fahiem, and Adam Grove. "On the forward checking algorithm." International Con-ference on Principles and Practice of Constraint Programming. Springer, Berlin, Heidelberg,1995.

CSC384 | University of Toronto 26

Variable and Value Ordering Heuristics: Human Analogy
What variables would you try first?

CSC384 | University of Toronto 27

Variable and Value Ordering Heuristics
• Heuristics can be used to determine

– the order in which variables are assigned:PickUnassignedVariable()
– the order of values tried for each variable.

• The choice of the next variable can vary from branch to branch.
Example: Under the assignment V1 = a we might choose to assign V4 next, whileunder V1 = b we might choose to assign V5 next.

• This dynamically chosen variable ordering has a tremendous impact on performance.

CSC384 | University of Toronto 28

Variable and Value Ordering Heuristics
Degree Heuristic: Select the variable that is involved in the largest number of constraints onother unassigned variables.

Minimum Remaining Values Heuristics (MRV):

• Always branch on a variable with the smallest remaining values (smallest CurDom).
Intuition: If a variable has only one value left, that value is forced, so we should prop-agate its consequences immediately.

• This heuristic tends to produce skinny trees at the top.More variables can be instantiated with fewer nodes searched.
• More constraint propagation/DWO failures occur when the tree starts to branch out.Hence, inconsistencies can be found much faster.

CSC384 | University of Toronto 29

Example: Map Colouring
Problem Statement: Color the following map using red, green, and blue such that adjacent
regions have di�erent colors.

CSC384 | University of Toronto 30

. Problem formulation:

• Variables:

• Domains:

• Constraints:

CSC384 | University of Toronto 31

CSC384 | University of Toronto 32

. {SA = red} (using Degree Heuristic)

CSC384 | University of Toronto 33

{SA = red,NT = blue} (using MRV and Degree Heuristic results in tie between NT,Qand NSW . We choose NT).

CSC384 | University of Toronto 34

. • {SA = red,NT = blue,Q = green} (using MRV and Degree Heuristic)

CSC384 | University of Toronto 35

. • {SA = red,NT = blue,Q = green,NWS = blue} (using MRV and Degree Heuristic)

CSC384 | University of Toronto 36

. {SA = red,NT = blue,Q = green,NWS = blue, V = green,WA = green, T = green}

CSC384 | University of Toronto 37

Example: Map Colouring

Try the map coloring example without MRV and Degree heuristics.

CSC384 | University of Toronto 38

FC and MRV: Empirically
• FC often is about 100 times faster than BT.

• FC with MRV (Minimal Remaining Values) often 10000 times faster.

• On some problems the speed up can be much greater.Converts problems that are not solvable to problems that are solvable.

• Still FC is not that powerful.Other more powerful forms of constraint propagation are used in practice.

CSC384 | University of Toronto 39

