CSC384
 Constraint Satisfaction Problems Part 1

Bahar Aameri \& Sonya Allin

Winter 2020

CSP slides are drawn from or inspired by a multitude of sources including :

Faheim Bacchus
Sheila McIIraith
Andrew Moore
Hojjat Ghaderi
Craig Boutillier
Jurgen Strum
Shaul Markovitch

Constraint Satisfaction Problems (CSPs)

- Chapter 6
- 6.1: Formalism
- 6.2: Constraint Propagation
- 6.3: Backtracking Search for CSP
- 6.4 is about local search which is a very useful idea but we won't cover it in class.

Constraint Satisfaction Problems (CSPs) - Introduction

- Uninformed search problems
- use problem-specific state representations and heuristics;
- are generally concerned about determining paths from the current state to goal states;
- view states as black boxes with no internal structures.
- Constraint Satisfaction Problems (CSPs)
- care less about paths and more about final (goal) configurations;
- take advantage of a general state representation.
- the uniform state representation allows design of more efficient algorithms.
- Techniques for solving CSPs have many practical applications in industry.

Constraint Satisfaction Problems (CSPs) - Intuition

- Represent states as vectors of feature values.
- A set of k variables (known as features).
- Each variable has a domain of different values.
- A state is specified by an assignment of values to all variables.
- A partial state is specified by an assignment of a value to some of the variables.
- A goal is specified as conditions on the vector of feature values.
- Solving a CSP: find a set of values for the features (variables) so that the values satisfy the specified conditions (constraints).

$$
\begin{aligned}
& w_{1}, w_{2}, w_{3} \quad \operatorname{Dom}\left[w_{1}\right]=\operatorname{Dom}\left[w_{2}\right] \\
&=\operatorname{Dom}\left[w_{3}\right]=\{10,15,20\} \\
& w_{1}>w_{2} \quad w_{2}=w_{3} \\
& w_{1}>w_{3}
\end{aligned}
$$

${ }^{1}$ Feature vectors provide a general state representation that is useful in many other areas of AI, particularly Machine Learning, Reasoning under Uncertainty, and Computer Vision.

Example: Sudoku

-	2							
			6					3
	7	4		8				
					3	3		2
	8			4				1
6			5					
				1				8
5					9	9		
								4

	9	5	6	2	1	4		3
	7	4	9	8	5	1		
	5	7	1	9	3	8	6	
	8	3	2	4	6	5	1	
	1		5	7		3	9	
	6		3	1		7	8	
	4	8	7	6	9	2		

- Each variable represent a cell.
- Domain: a single value for cells already filled in; the set $\{1, \ldots, 9\}$ for empty cells.
- State: any completed board given by specifying the value in each cell.
- Partial State: some incomplete filling out of the board.
- Constrains: The variables that form
- a column must be distinct;
- a row must be distinct;
- a sub-square must be distinct.

A CSP consists of

- A set of variables V_{1}, \ldots, V_{n};
- A (finite) domain of possible values $\operatorname{Dom}\left[V_{i}\right]$ for each variable V_{i};
- A set of constraints C_{1}, \ldots, C_{m}.
- Each variable V_{i} can be assigned any value from its domain:

$$
V_{i}=d \quad \text { where } \quad d \in \operatorname{Dom}\left[V_{i}\right]
$$

- Each constraint C
- Has a set of variables it operates over, called its scope. Example: The scope of $C\left(V_{1}, V_{2}, V_{4}\right)$ is $\left\{V_{1}, V_{2}, V_{4}\right\}$
- Given an assignment to variables the C returns True if the assignment satisfies the constraint; False if the assignment falsifies the constraint.
- Solution to a CSP: An assignment of a value to all of the variables such that every constraint is satisfied.
- A CSP is unsatisfiable if no solution exists.

Types of Constraints

- Unary Constraints (over one variable)
$C(X): X=2$;
$C(Y): Y>5$
- Binary Constraints (over two variables) $C(X, Y): X+Y<6$
- Higher-order constraints: over 3 or more variables.
$A L L-\operatorname{Diff}\left(V_{1}, . ., V_{n}\right): V_{1} \neq V_{2}, V_{1} \neq V_{3}, \ldots, V_{2} \neq V_{1}, \ldots, V_{n} \neq V_{1}, \ldots, V_{n} \neq V_{n-1} .^{2}$

[^0]Constraint Table

- We can specify the constraints with a table

$$
\wedge^{C(1,1,1)=\text { False }}
$$

$\mathbf{V 1}$	$\mathbf{V 2}$	$\mathbf{V 4}$	$\mathbf{c}(\mathbf{V 1 , V 2 , V 4)}$
1	1	1	False
1	1	2	False
1	2	1	False
1	2	2	False
2	1	1	True
2	1	2	False
2	2	1	False
2	2	2	False
2	1	1	False
3	2	2	True
3	2	1	True
3	2	False	
3			

- Often we can specify the constraint more compactly with an expression.

$$
C\left(V_{1}, v_{2}, v_{4}\right):\left(V_{1}=V_{2}+v_{4}\right)
$$

- Domains: $\operatorname{Dom}\left[V_{i j}\right]=\{1,2, . ., 9\}$ for empty cells $\operatorname{Dom}\left[V_{i j}\right]=\{k\}$, where k is a fixed value, for filled cells.

Example: Sudoku

- Constraints:
- Row constraints:

All - $\operatorname{Diff}\left(V_{11}, V_{12}, V_{13}, \ldots, V_{19}\right)$ All - $\operatorname{Diff}\left(V_{21}, V_{22}, V_{23}, \ldots, V_{29}\right)$ All - $\operatorname{Diff}\left(V_{91}, V_{12}, V_{13}, \ldots, V_{99}\right)$

$\rightarrow |$| 1 | 2 | 6 | 4 | 3 | 7 | 9 | 5 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | 9 | 5 | 6 | 2 | 1 | 4 | 7 | 3 |
| | 7 | 4 | 9 | 8 | 5 | 1 | 2 | 6 |
| 4 | 5 | 7 | 1 | 9 | 3 | 8 | 6 | 2 |
| 9 | 8 | 3 | 2 | 4 | 6 | 5 | 1 | 7 |
| 6 | 1 | 2 | 5 | 7 | 8 | 3 | 9 | 4 |
| 2 | 6 | 9 | 3 | 1 | 4 | 7 | 8 | 5 |
| 5 | 4 | 8 | 7 | 6 | 9 | 2 | 3 | 1 |
| 7 | 3 | 1 | 8 | 5 | 2 | 6 | 4 | 9 |
| $\left.V_{19}\right)$ | | | | | | | | |

- Constraints:

- Row constraints:

$$
A l l-\operatorname{Diff}\left(V_{11}, V_{12}, V_{13}, \ldots, V_{19}\right)
$$

$$
\text { All - Diff }\left(V_{21}, V_{22}, V_{23}, \ldots, V_{29}\right)
$$

$$
A l l-\operatorname{Diff}\left(V_{91}, V_{12}, V_{13}, \ldots, V_{99}\right)
$$

- Column Constraints:

All - $\operatorname{Diff}\left(V_{11}, V_{21}, V_{31}, \ldots, V_{91}\right)$
All - $\operatorname{Diff}\left(V_{12}, V_{22}, V_{32}, \ldots, V_{92}\right)$
All - Diff $\left(V_{19}, V_{29}, V_{39}, \ldots, V_{99}\right)$

1	2			4	3		9		8
8	9		5	6	2	1	4	7	3
3	7		4	9	8	5	1		6
4	5		7	1	9	3	8	6	2
9	8	8	3	2	4	6	5	1	7
6	1	-	2	5	7	8	3	9	4
2			9	3	1	4	7	8	5
5	5		8	7	6	9	2	3	1
7		,	1	8	5	2	6	4	

Example: Sudoku

- Constraints:
- Row constraints:
All - $\operatorname{Diff}\left(V_{11}, V_{12}, V_{13}, \ldots, V_{19}\right)$
All - $\operatorname{Diff}\left(V_{21}, V_{22}, V_{23}, \ldots, V_{29}\right)$
\ldots
All-Diff $\left(V_{91}, V_{12}, V_{13}, \ldots, V_{99}\right)$
- Column Constraints:

All - $\operatorname{Diff}\left(V_{11}, V_{21}, V_{31}, \ldots, V_{91}\right)$
All - $\operatorname{Diff}\left(V_{12}, V_{22}, V_{32}, \ldots, V_{92}\right)$
All - $\operatorname{Diff}\left(V_{19}, V_{29}, V_{39}, \ldots, V_{99}\right)$

- Sub-Square Constraints:

All-Diff $\left(V_{11}, V_{12}, V_{13}, V_{21}, V_{22}, V_{23}, V_{31}, V_{32}, V_{33}\right)$,
All-Diff $\left(V_{77}, V_{78}, V_{79}, \ldots, V_{97}, V_{98}, V_{99}\right)$

Example: N-Queens

Problem Statement: Place N Queens on an $N \times N$ chess board so that no Queen can attack any other Queen.

$$
\alpha_{1}=1
$$

Problem formulation:

- variables: N variables, each representing a queen
- Domains: N^{2} values for each variable, representing the of a queen on the chessboard

Number of Possible Configurations: $\left(N^{2}\right)^{N}$

$$
N_{1}^{2} x_{N} N^{2} x_{L} N^{2} x \ldots M_{L} N_{j}^{2} \left\lvert\, \begin{aligned}
& \text { For } \\
& (64)^{8}=281,474,976,710,666 \\
& \text { possible configurations }
\end{aligned}\right.
$$

Example: N -Queens

Is there a better way to represent the N -queens problem? We know we cannot place two queens in a single row.

Problem Statement: Place N Queens on an $N \times N$ chess board so that no Queen can attack any other Queen.

Better Formulation:

- Variables: N variables, one for each queen on each row Qi: i-th queen on row i
- Domains: Value of Q_{i} is the column the queen on row is is placed.
Possible values: $\{1,2, \ldots, N\}$
Number of all possible configurations: N^{N}

$$
\mathbb{N}_{X} N_{N} \mathbb{N} \ldots \times N \sqrt{\text { For }} \begin{gathered}
8 \text {-queens: } \\
8=16,777,216 \\
\text { configurations }
\end{gathered}
$$

Example: N-Queens

Example: N-Queens

Constraints:

- Cannot put two Queens in same column: For all $i \neq j, Q_{i} \neq Q_{j}$

$$
\text { or All-Diff }\left(Q_{1}, Q_{2}, \ldots, Q_{N}\right)
$$

- Diagonal constraints: for all $i \neq j$,

$$
\left|Q_{i}-Q_{j}\right| \neq|i-j|
$$

Example: N-Queens

Solving CSPs: CSP as a Search Problem

A CSP could be formulated as a search problem:

- Initial State: Empty assignment.
- Successor Function: Assigned values to an unassigned variable.
- Goal Test:
(1) The assignment is complete
(2) No constraints is violated.

CSPs do NOT require finding a path (to a goal). They only need the configuration of the goal state.
CSPs are best solved by a specialized version search called Backtracking Search.

Key Intuitions:

- Searching through the space of partial assignments, rather than paths.
- Decide on a suitable value for one variable at a time. Order in which we assign the variables does not matter.
- If a constraint is falsified during the process of partial assignment, immediately reject the current partial assignment.

CSP Backtracking Search - Intuition

CSP Search Tree:

- Root: Empty Assignment.
- Children of a node: all possible value assignments for a particular unassigned variable.
- The tree stops descending if an assignment violates a constraint.
- Goal Node:
(1) The assignment is complete
(2) No constraints is violated.

Example: 4-Queens

Draw the CSP search tree for 4-Queens.

Backtracking Search: Implementation

We will apply a recursive implementation:

- If all variables are set, print the solution and terminate.
- Otherwise:
- Pick an unassigned variable V and assign it a value.
- Test the constraints corresponding with V and all other variables of them are assigned.
- If a constraint is unsatisfied, return (backtrack).
- Otherwise, go one lever deeper by invoking a recursive call.

Backtracking Search: The Algorithm

def BT(Level):

1. if all Variables assigned
2. PRINT Value of each Variable
3. EXIT or RETURN
4. V := PickUnassignedVariable()
5. Assigned[V] := TRUE
6. for $d:=$ each member of Domain(V) \# the domain values of V
7. Value[V] := d
8. ConstraintsOK := TRUE
9. for each constraint C such that (i) V is a variable of C and
(ii) all other variables of C are assigned:
10. if C is not satisfied by the set of current assignments:
11. ConstraintsOK := FALSE
12. if ConstraintsOk == TRUE:
13. BT(Level+1)
14. Assigned[V] := FALSE \# UNDO as we have tried all of V's values
15. RETURN

[^0]: ${ }^{2}$ Later, we will see that this collection of binary constraints has less pruning power than $A L L-D i f f$, so $A L L-D$ iff appears in many CSP problems.

