
CSC384
Constraint Satisfaction Problems

Part 1

Bahar Aameri & Sonya Allin

Winter 2020

Credits
CSP slides are drawn from or inspired by a multitude of sources including :

Faheim BacchusSheila McIlraithAndrew MooreHojjat GhaderiCraig BoutillierJurgen StrumShaul Markovitch

CSC384 | University of Toronto 2

Constraint Satisfaction Problems (CSPs)
• Chapter 6

– 6.1: Formalism

– 6.2: Constraint Propagation

– 6.3: Backtracking Search for CSP

– 6.4 is about local search which is a very useful idea but we won’t cover it inclass.

CSC384 | University of Toronto 3

Constraint Satisfaction Problems (CSPs) – Introduction
• Uninformed search problems

– use problem-specific state representations and heuristics;
– are generally concerned about determining paths from the current state to goalstates;
– view states as black boxes with no internal structures.

• Constraint Satisfaction Problems (CSPs)

– care less about paths and more about final (goal) configurations;
– take advantage of a general state representation.
– the uniform state representation allows design of more e�cient algorithms.

• Techniques for solving CSPs have many practical applications in industry.

CSC384 | University of Toronto 4

Constraint Satisfaction Problems (CSPs) – Intuition
• Represent states as vectors of feature values.1

– A set of k variables (known as features).
– Each variable has a domain of di�erent values.
– A state is specified by an assignment of values to all variables.
– A partial state is specified by an assignment of a value to some of the variables.

• A goal is specified as conditions on the vector of feature values.
• Solving a CSP: find a set of values for the features (variables) so that the values satisfythe specified conditions (constraints).

1Feature vectors provide a general state representation that is useful in many other areas of AI, particularly MachineLearning, Reasoning under Uncertainty, and Computer Vision.

CSC384 | University of Toronto 5

Example: Sudoku

CSC384 | University of Toronto 6

Example: Sudoku
• Each variable represent a cell.
• Domain: a single value for cells already filled in; the set {1, ..., 9} for empty cells.
• State: any completed board given by specifying the value in each cell.
• Partial State: some incomplete filling out of the board.
• Constrains: The variables that form

– a column must be distinct;
– a row must be distinct;
– a sub-square must be distinct.

CSC384 | University of Toronto 7

Formalization of a CSP
A CSP consists of

• A set of variables V1, ..., Vn;
• A (finite) domain of possible values Dom[Vi] for each variable Vi;
• A set of constraints C1, ..., Cm.
• Each variable Vi can be assigned any value from its domain:

Vi = d where d ∈ Dom[Vi]

• Each constraint C
– Has a set of variables it operates over, called its scope.

Example: The scope of C(V1, V2, V4) is {V1, V2, V4}

– Given an assignment to variables the C returns
True if the assignment satisfies the constraint;
False if the assignment falsifies the constraint.

CSC384 | University of Toronto 8

Formalization of a CSP

• Solution to a CSP: An assignment of a value to all of the variables such that everyconstraint is satisfied.
• A CSP is unsatisfiable if no solution exists.

CSC384 | University of Toronto 9

Types of Constraints
• Unary Constraints (over one variable)

C(X) : X = 2;
C(Y) : Y > 5

• Binary Constraints (over two variables)
C(X,Y) : X + Y < 6

• Higher-order constraints: over 3 or more variables.
ALL−Diff(V1, .., Vn): V1 6= V2, V1 6= V3, ..., V2 6= V1, ..., Vn 6= V1, ..., Vn 6= Vn−1.2

2Later, we will see that this collection of binary constraints has less pruning power thanALL−Diff , soALL−Diffappears in many CSP problems.

CSC384 | University of Toronto 10

Constraint Table
• We can specify the constraints with a table

• Often we can specify the constraint more compactly with an expression.

CSC384 | University of Toronto 11

Example: Sudoku

• Variables: V11, V12, ..., V21, V22, ..., V91, ..., V99

• Domains: Dom[Vij] = {1, 2, .., 9} for empty cells
Dom[Vij] = {k}, where k is a fixed value, for filled cells.

CSC384 | University of Toronto 12

Example: Sudoku

• Constraints:
- Row constraints:
All −Diff(V11, V12, V13, ..., V19)

All −Diff(V21, V22, V23, ..., V29)

...

All −Diff(V91, V12, V13, ..., V99)

CSC384 | University of Toronto 13

Example: Sudoku
• Constraints:
- Row constraints:
All −Diff(V11, V12, V13, ..., V19)

All −Diff(V21, V22, V23, ..., V29)

...

All −Diff(V91, V12, V13, ..., V99)

- Column Constraints:
All −Diff(V11, V21, V31, ..., V91)

All −Diff(V12, V22, V32, ..., V92)

...

All −Diff(V19, V29, V39, ..., V99)

CSC384 | University of Toronto 14

Example: Sudoku
• Constraints:
- Row constraints:
All −Diff(V11, V12, V13, ..., V19)

All −Diff(V21, V22, V23, ..., V29)

...

All −Diff(V91, V12, V13, ..., V99)

- Column Constraints:
All −Diff(V11, V21, V31, ..., V91)

All −Diff(V12, V22, V32, ..., V92)

...

All −Diff(V19, V29, V39, ..., V99)

- Sub-Square Constraints:
All−Diff(V11, V12, V13, V21, V22, V23, V31, V32, V33),...,
All−Diff(V77, V78, V79, ..., V97, V98, V99)

CSC384 | University of Toronto 15

Example: N-Queens
Problem Statement: Place N Queens on an N ×N chess board so that no Queen can attackany other Queen.

CSC384 | University of Toronto 16

Example: N-Queens

Problem formulation:

• Variables:

• Domains:

CSC384 | University of Toronto 17

Example: N-Queens

Is there a better way to represent the N-queens problem? We know we cannot place twoqueens in a single row.
Problem Statement: Place N Queens on an N ×N chess board so that no Queen can attackany other Queen.
Better Formulation:

• Variables:

• Domains:

CSC384 | University of Toronto 18

Example: N-Queens

CSC384 | University of Toronto 19

Example: N-Queens

Constraints:

• Cannot put two Queens in same column:

• Diagonal constraints:

CSC384 | University of Toronto 20

Example: N-Queens

CSC384 | University of Toronto 21

Solving CSPs: CSP as a Search Problem

A CSP could be formulated as a search problem:
• Initial State: Empty assignment.
• Successor Function: Assigned values to an unassigned variable.
• Goal Test:(1) The assignment is complete(2) No constraints is violated.

CSC384 | University of Toronto 22

.

CSC384 | University of Toronto 23

CSP Backtracking Search - Intuition
CSPs do NOT require finding a path (to a goal). They only need the configuration of the goalstate.CSPs are best solved by a specialized version search called Backtracking Search.
Key Intuitions:

• Searching through the space of partial assignments, rather than paths.
• Decide on a suitable value for one variable at a time.Order in which we assign the variables does not matter.
• If a constraint is falsified during the process of partial assignment, immediately rejectthe current partial assignment.

CSC384 | University of Toronto 24

CSP Backtracking Search - Intuition

CSP Search Tree:

• Root: Empty Assignment.
• Children of a node: all possible value assignments for a particular unassigned variable.
• The tree stops descending if an assignment violates a constraint.
• Goal Node:(1) The assignment is complete(2) No constraints is violated.

CSC384 | University of Toronto 25

.

CSC384 | University of Toronto 26

Example: 4-Queens
Draw the CSP search tree for 4-Queens.

CSC384 | University of Toronto 27

CSC384 | University of Toronto 28

CSC384 | University of Toronto 29

CSC384 | University of Toronto 30

Backtracking Search: Implementation

We will apply a recursive implementation:
• If all variables are set, print the solution and terminate.
• Otherwise:

– Pick an unassigned variable V and assign it a value.
– Test the constraints corresponding with V and all other variables of them areassigned.
– If a constraint is unsatisfied, return (backtrack).
– Otherwise, go one lever deeper by invoking a recursive call.

CSC384 | University of Toronto 31

Backtracking Search: The Algorithm
def BT(Level):
1. if all Variables assigned
2. PRINT Value of each Variable
3. EXIT or RETURN # EXIT for only one solution

RETURN for more solutions
4. V := PickUnassignedVariable()
5. Assigned[V] := TRUE
6. for d := each member of Domain(V) # the domain values of V
7. Value[V] := d
8. ConstraintsOK := TRUE
9. for each constraint C such that (i) V is a variable of C and

(ii) all other variables of C are assigned:
10. if C is not satisfied by the set of current assignments:
11. ConstraintsOK := FALSE
12. if ConstraintsOk == TRUE:
13. BT(Level+1)
14. Assigned[V] := FALSE # UNDO as we have tried all of V’s values
15. RETURN

CSC384 | University of Toronto 32

