CSC384
Constraint Satisfaction Problems
Part 1

Bahar Aameri & Sonya Allin

Winter 2020

CSP slides are drawn from or inspired by a multitude of sources including :

Faheim Bacchus
Sheila Mcllraith
Andrew Moore
Hojjat Ghaderi
Craig Boutillier
Jurgen Strum
Shaul Markovitch

CSC384 | University of Toronto 2

Constraint Satisfaction Problems (CSPs)

¢ Chapter 6

6.1: Formalism

- 6.2: Constraint Propagation

6.3: Backtracking Search for CSP

6.4 is about local search which is a very useful idea but we won’t cover it in
class.

CSC384 | University of Toronto 3

Constraint Satisfaction Problems (CSPs) — Introduction

* Uninformed search problems
- use problem-specific state representations and heuristics;

- are generally concerned about determining paths from the current state to goal
states;

- view states as black boxes with no internal structures.
« Constraint Satisfaction Problems (CSPs)
— care less about paths and more about final (goal) configurations;
- take advantage of a general state representation.
- the uniform state representation allows design of more efficient algorithms.

« Techniques for solving CSPs have many practical applications in industry.

CSC384 | University of Toronto 4

Constraint Satisfaction Problems (CSPs) — Intuition

Represent states as vectors ot feature values.

A set of k variables (known as features).

Each variable has a domain of different values.

— A state is specified by an assignment of values to all variables.

A partial state is specified by an assignment of a value to some of the variables.
* A goalis specified as conditions on the vector of feature values.

* Solving a CSP: find a set of values for the features (variables) so that the values satisfy
the specified conditions (constraints).

W, \I\I7_ 3\/\]3 .D"MZWC& :DGMZWY_E

=0 w :%“”15’207(
WS w, Ws =Wy om] WS
WS We

1
Feature vectors provide a general state representation that is useful in many other areas of AI, particularly Machine
Learning, Reasoning under Uncertainty, and Computer Vision.

CSC384 | University of Toronto

=
=
o
°
=
()
K
a
E
©
3
i

o |m|©O|N|N <0 —| o
[N eu| o] ov|oo || <+
o<t |—|oo/tn| MmN
N[n|en[o)< oy
wnla[o0]on < <[]
<« |©o|o|—|ain|mn|N 0o
WM Ny | 0|
o[N[oo| || < [m
—[oo|m|<|o|o|~tn]~
m |
— |0 <
7 |
oM (o)}
oo| |« |— |
— 1
-
NN oo

ity of Toronto

CSC384 | Univers

Example: Sudoku

« Each variable represent a cell.
» Domain: a single value for cells already filled in; the set {1, ..., 9} for empty cells.
» State: any completed board given by specifying the value in each cell.
* Partial State: some incomplete filling out of the board.
» Constrains: The variables that form
- a column must be distinct;
- arow must be distinct;

- asub-square must be distinct.

CSC384 | University of Toronto 7

Formalization of a CSP

A CSP consists of
* A set of variables V1, ..., Vy;
A (finite) domain of possible values Dom[V;] for each variable V;;

* A set of constraints C, ..., Cp,.

* Each variable V; can be assigned any value from its domain:

Vi=d where d € Dom|V;]

* Each constraint C

- Has a set of variables it operates over, called its scope.
Example: The scope of C(Vi, V2, Vi) is {V1, V2, Va}

- Given an assignment to variables the C returns
True if the assignment satisfies the constraint;
False if the assignment falsifies the constraint.

CSC384 | University of Toronto 8

Formalization of a CSP

* Solution to a CSP: An assignment of a value to all of the variables such that every
constraint is satisfied.

* A CSP is unsatisfiable if no solution exists.

CSC384 | University of Toronto 9

Types of Constraints

* Unary Constraints (over one variab
C(X): X =2
CY): Y >5

» Binary Constraints (over two variables)
C(X,)Y): X+Y <6

« Higher-order constraints: over 3 or more variables.
ALL = Diff(Vi, ., Va): Vi #£ Vo, Vi £ V3, ., Vo £ V1, o, Vi £ V1, o, Vi # Vi1 2

2Later, we will see that this collection of binary constraints has less pruning power than ALL — Dif f,so ALL — Dif f
appears in many CSP problems.

CSC384 | University of Toronto 10

Constraint Table

* We can specify the constraints with a table

C(\; I ,l-): Y—'a-lﬁe’

V1 V2 V4 C(V1,v2,v4)
1 1 1 (Fase]
1 1 2 False
1 2 1 False Cle,y, l):
1 2 2 False N
2 1 1 True —/ True
2 1 2 False
2 2 1 False
2 2 2 False
3 1 1 False
3 1 2 True
3 2 1 True
3 2 2 False

« Often we can specify the constraint more compactly with an expression.

CVive Ve (V) 2Vt Vs)

CSC384 | University of Toronto 11

Example: Sudoku

%_6 413[7[9[5]8
9[s[6[2[1[4]7][3
3/7/4|9/8/5[1]2]6
4157[1[9/3[8]6]2
9/8/3|2/4/6|5/1]7
6/1[2[5/7[8[3[9]4
216/9(3[1]4|7/8]5
5/4/8{7/6/9[23]1
713/1[8/5/2]6/4]9

* Variables: V11, 12,.‘.,Vgl,v227...7V91,...,V99

* Domains: Dom|[V;;] = {1,2,..,9} for empty cells
Dom[V;;] = {k}, where k is a fixed value, for filled cells.

CSC384 | University of Toronto 12

Example: Sudoku

1/2]6]4[3]7][9]5]8
* Constraints: 8/9/5(6.2/1(4/7 3
- Row constraints: 374[985[126

All - Dif f(Vi1, Viz, Vs, ..., Vio) 45/7{119318162

All = Dif f(Var, Vaz, Vag, ..., Vag 9/8/3{2/4/6]5/1]7

6/1/2(5 7/8|3/9/4

All — Dif f(Vo1, Via, Vi3, ..., Voo) 2|6/9|3/1/4|7 8|5

54/8|76/9(2[(3!1

_? 7[3/1[8(5.2]|6/4.9

CSC384 | University of Toronto 13

Example: Sudoku

* Constraints:

- Row constraints:

All = Dif f(Vi1, V2, Vi, ..., Vig) é SE’ gg; 2; g
All = Dif f(Va1, Va2, Vas, ..., Vag) ST tete et
sl el
- Column Constraints: 6|1/2|57/8|3 914
All — Dif f(Vi1, Va1, Va1, ..., Vor) 216|9|3(1/4(7/8]5
All — Dif f(Vaz, Va2, Va2, ..., Va2) ; ‘3‘? ggg éi é
All ~ Dif f(Vio, Vao, Vao, - vgg)\ /TJ

\

CSC384 | University of Toronto 14

Example: Sudoku

« Constraints:

- Row constraints:
All — Dif f(Vi1, Va2, Vas, ..., Vig)
All — Dif f(Va1, Vaz, Vas, ..., Vag)

. 126143 7(9/58
All*D’Lff(Vgl,V12,V13,...,V99) 7 895 62 1[4 7(3

317/4}985[126
- Column Constraints: 4/57(1/9 3|86 2
All — Dif f(Vi1, Va1, Va1, ..., Vo1) 98 3|2|46|5/1|7
All — Dif f(Vi2, Va2, V32, ..., Va2) g é g g i g ; g ;1
All — Dif f(Vho, V29, Vag, ..., Vog) ;g? ;gg éi ;

- Sub-Square Constraints:
AU—-Dif f(Vi1, Vi, Vi3, Va1, Va2, Va3, V31, Va2, Vi3],

All-Dif f(Vrr, Vs, Vr, ..., Vor, Vog, Vag)

CSC384 | University of Toronto 15

Example: N-Queens

Problem Statement: Place V Queens on an N x N chess board so that no Queen can attack
any other Queen.

Q\“'\

AN
‘ Chess Captor - DEMO
-‘Q i 1//7 @2 = \%

b A —
=2\ | =W L

w
W

Chess Captor - DEMO

h g ft e d ¢ b a

W

0 N O A WwN

CSC384 | University of Toronto 16

Example: N-Queens

Problem formulation:

- Variables: /N Voriahles , tock YePled enkinog o queen

+ Domains: /\)?' Vokues é?‘n/ eodn Veriohle, /e,P/(_%uw—ima,
The Og o queen an the chess omral

N

N umber on Passible C»J?%wwr-'od‘- CNZ)

Yor ?"1“‘”“%2
NI KA | (4281, 4Tk, 976, Flo s 654
Possible tond Gurations

CSC384 | University of Toronto 17

Example: N-Queens

Is there a better way to represent the N-queens problem? We know we cannot place two
queens in a single row.

Problem Statement: Place NV Queens on an N x N chess board so that no Queen can attack
any other Queen.

Better Formulation:
. Variables: N Voricloless, one #ov each queen. on each vow

Q,;:, L-th queen on fow ¢
- Domains: VO\.‘M& a% QL is trhe Calumn the ”[ucm

ONn Yow | S PLAC&”Q-'
Possible Values - {’la‘Li g Nl{

~
N ynber 04— oW Possible CorP\%uVM}Ohg; N

For F-queens: %j; 6, 7%, 216
On?‘l‘kh/ﬁh"\s

CSC384 | University of Toronto 18

Kad o LY TN

Example: N-Queens

Q11 l & _w [Chess Captor - DEMO 1)

[e
Wl 3
Wia . Qu-%
Wy 5

Wl 6
W 7
8

silrz
Chess Captor - DEMO|

h g f e d ¢ b a

CSC384 | University of Toronto 19

Example: N-Queens

Constraints:

+ Cannot put two Queens in same column: V”)/ ol L ‘r" 45 QE # QJ

oYy A“-—D-"Fi(Q|Jon"JQ[\J)

+ Diagonal constraints: 4-0(Al (,'f,‘i
2

|Qi-Qi] #1i- 4

—_—

CSC384 | University of Toronto 20

Example: N-Queens

CSC384 | University of Toronto 21

Solving CSPs: CSP as a Search Problem

A CSP could be formulated as a search problem:

« Initial State: Empty assignment.
* Successor Function: Assigned values to an unassigned variable.

* Goal Test:
(1) The assignment is complete
(2) No constraints is violated.

CSC384 | University of Toronto 22

CSC384 [University of Toronto

23

CSP Backtracking Search - Intuition

CSPs do NOT require finding a path (to a goal). They only need the configuration of the goal
state.
CSPs are best solved by a specialized version search called Backtracking Search.

Key Intuitions:
* Searching through the space of partial assignments, rather than paths.

» Decide on a suitable value for one variable at a time.
Order in which we assign the variables does not matter.

+ If a constraint is falsified during the process of partial assignment, immediately reject
the current partial assignment.

CSC384 | University of Toronto 24

CSP Backtracking Search - Intuition

CSP Search Tree:
* Root: Empty Assignment.
 Children of a node: all possible value assignments for a particular unassigned variable.
* The tree stops descending if an assignment violates a constraint.

* Goal Node:
(1) The assignment is complete
(2) No constraints is violated.

CSC384 | University of Toronto 25

CSC384 [University of Toronto

26

Example: 4-Queens

Draw the CSP search tree for 4-Queens.

CSC384 | University of Toronto 27

CSC384 [University of Toronto 78

Backtracking Search: Implementation

We will apply a recursive implementation:
+ If all variables are set, print the solution and terminate.

* Otherwise:
- Pick an unassigned variable V' and assign it a value.

- Test the constraints corresponding with V" and all other variables of them are
assigned.

- If a constraint is unsatisfied, return (backtrack).

- Otherwise, go one lever deeper by invoking a recursive call.

CSC384 | University of Toronto 31

Backtracking Search: The Algorithm

def BT(Level):
1. if all Variables assigned

2. PRINT Value of each Variable
3. EXIT or RETURN # EXIT for only one solution
RETURN for more solutions
4. V := PickUnassignedVariable()
5. Assigned[V] := TRUE
6. for d := each member of Domain(V) # the domain values of V
7. Value[V] :=d
8. ConstraintsOK := TRUE
9. for each constraint C such that (i) V is a variable of C and
(ii) all other variables of C are assigned:
10. if C is not satisfied by the set of current assignments:
11. ConstraintsOK := FALSE
12. if ConstraintsOk == TRUE:
13. BT (Level+1)
14. Assigned[V] := FALSE # UNDO as we have tried all of V’s values
15. RETURN

CSC384 | University of Toronto 32

