CSC384 Constraint Satisfaction Problems Part 1

Bahar Aameri & Sonya Allin

Winter 2020

CSP slides are drawn from or inspired by a multitude of sources including :

Faheim Bacchus Sheila McIlraith Andrew Moore Hojjat Ghaderi Craig Boutillier Jurgen Strum Shaul Markovitch

Constraint Satisfaction Problems (CSPs)

- Chapter 6
 - 6.1: Formalism
 - 6.2: Constraint Propagation
 - 6.3: Backtracking Search for CSP
 - 6.4 is about local search which is a very useful idea but we won't cover it in class.

Constraint Satisfaction Problems (CSPs) – Introduction

- Uninformed search problems
 - use problem-specific state representations and heuristics;
 - are generally concerned about determining paths from the current state to goal states;
 - view states as black boxes with no internal structures.
- Constraint Satisfaction Problems (CSPs)
 - care less about paths and more about final (goal) configurations;
 - take advantage of a general state representation.
 - the uniform state representation allows design of more efficient algorithms.
- Techniques for solving CSPs have many practical applications in industry.

Constraint Satisfaction Problems (CSPs) – Intuition

- Represent states as vectors of feature values.
 - A set of k variables (known as features).
 - Each variable has a domain of different values.
 - A state is specified by an assignment of values to all variables.
 - A partial state is specified by an assignment of a value to some of the variables.
- A goal is specified as conditions on the vector of feature values.
- Solving a CSP: find a set of values for the features (variables) so that the values satisfy the specified conditions (constraints).

$$W_1, W_2, W_3 \qquad Dom [W_1] = Dom [W_2] \\ = Dom [W_3] = \begin{cases} lo, 15, 2o \\ lo, 15, 2o \\$$

¹Feature vectors provide a general state representation that is useful in many other areas of AI, particularly Machine Learning, Reasoning under Uncertainty, and Computer Vision.

^	2							
			6					3
	7	4		8				
					3			2
	8			4			1	
6			5					
				1		7	8	
5					9			
							4	

1	2	6	4	3	7	9	5	8
8	9	5	6	2	1	4	7	3
3	7	4	9	8	5	1	2	6
4	5	7	1	9	3	8	6	2
9	8	3	2	4	6	5	1	7
6	1	2	5	7	8	3	9	4
2	6	9	3	1	4	7	8	5
5	4	8	7	6	9	2	3	1
7	3	1	8	5	2	6	4	9

- Each variable represent a cell.
- **Domain**: a single value for cells already filled in; the set $\{1, ..., 9\}$ for empty cells.
- State: any completed board given by specifying the value in each cell.
- Partial State: some incomplete filling out of the board.
- · Constrains: The variables that form
 - a column must be distinct;
 - a row must be distinct;
 - a sub-square must be distinct.

Formalization of a CSP

- A CSP consists of
 - A set of variables $V_1, ..., V_n$;
 - A (finite) domain of possible values $Dom[V_i]$ for each variable V_i ;
 - A set of constraints $C_1, ..., C_m$.
 - Each variable V_i can be assigned any value from its domain:

 $V_i = d$ where $d \in Dom[V_i]$

- Each constraint C
 - Has a set of variables it operates over, called its scope. Example: The scope of $C(V_1, V_2, V_4)$ is $\{V_1, V_2, V_4\}$
 - Given an assignment to variables the *C* returns
 True if the assignment satisfies the constraint;
 False if the assignment falsifies the constraint.

- Solution to a CSP: An assignment of a value to all of the variables such that every constraint is satisfied.
- A CSP is unsatisfiable if no solution exists.

Types of Constraints

- Unary Constraints (over one variable)
 C(X) : X = 2;
 C(Y) : Y > 5
- **Binary** Constraints (over two variables) C(X, Y) : X + Y < 6
- Higher-order constraints: over 3 or more variables. $ALL - Diff(V_1, ..., V_n): V_1 \neq V_2, V_1 \neq V_3, ..., V_2 \neq V_1, ..., V_n \neq V_1, ..., V_n \neq V_{n-1}$.²

 $^{^{2}}$ Later, we will see that this collection of binary constraints has less pruning power than ALL - Diff, so ALL - Diff appears in many CSP problems.

Constraint Table

• We can specify the constraints with a table

C(1,1,1) = Fal	se			
V1	V2	V4	C(V1,V2,V4)	
1	1	1	False	
1	1	2	False	
1	2	1	False	$\mathcal{C}(\boldsymbol{z}_{1},\boldsymbol{i})_{=}$
1	2	2	False	A Tr
2	1	1	True	
2	1	2	False	
2	2	1	False	
2	2	2	False	
3	1	1	False	
3	1	2	True	
3	2	1	True	
3	2	2	False	

• Often we can specify the constraint more compactly with an expression.

$$C(V_1, V_2, V_4)$$
: $(V_1 = V_2 + V_4)$

- Variables: $V_{11}, V_{12}, ..., V_{21}, V_{22}, ..., V_{91}, ..., V_{99}$
- Domains: $Dom[V_{ij}] = \{1, 2, .., 9\}$ for empty cells $Dom[V_{ij}] = \{k\}$, where k is a fixed value, for filled cells.

Constraints: • - Row constraints: $All - Diff(V_{11}, V_{12}, V_{13}, ..., V_{19})$ $All - Diff(V_{21}, V_{22}, V_{23}, ..., V_{29})$... $All - Diff(V_{91}, V_{12}, V_{13}, ..., V_{99})$ 1 8 5 2 6

Constraints:

Constraints:

- Row constraints:

$$All - Diff(V_{11}, V_{12}, V_{13}, ..., V_{19})$$

 $All - Diff(V_{21}, V_{22}, V_{23}, ..., V_{29})$
...
 $All - Diff(V_{91}, V_{12}, V_{13}, ..., V_{99})$

- Column Constraints:

$$All - Diff(V_{11}, V_{21}, V_{31}, ..., V_{91})$$

 $All - Diff(V_{12}, V_{22}, V_{32}, ..., V_{92})$
...
 $All - Diff(V_{19}, V_{29}, V_{39}, ..., V_{99})$

- Sub-Square Constraints:

$$All-Diff(V_{11}, V_{12}, V_{13}, V_{21}, V_{22}, V_{23}, V_{31}, V_{32}, V_{33}),$$

...,
 $All-Diff(V_{77}, V_{78}, V_{79}, ..., V_{97}, V_{98}, V_{99})$

Example: N-Queens

Problem Statement: Place N Queens on an $N \times N$ chess board so that no Queen can attack any other Queen.

Problem formulation:

· Variables: N Variables, each representing a queen

Is there a better way to represent the N-queens problem? We know we cannot place two queens in a single row.

Problem Statement: Place N Queens on an $N \times N$ chess board so that no Queen can attack any other Queen.

Example: N-Queens

Example: N-Queens

	豐		

A CSP could be formulated as a search problem:

- Initial State: Empty assignment.
- Successor Function: Assigned values to an unassigned variable.
- Goal Test: (1) The assignment is complete (2) No constraints is violated.

CSPs do NOT require finding a path (to a goal). They only need the **configuration** of the goal state.

CSPs are best solved by a specialized version search called **Backtracking Search**.

Key Intuitions:

- Searching through the space of partial assignments, rather than paths.
- Decide on a suitable value for one variable at a time.
 Order in which we assign the variables does not matter.
- If a constraint is falsified during the process of partial assignment, immediately reject the current partial assignment.

CSP Search Tree:

- Root: Empty Assignment.
- · Children of a node: all possible value assignments for a particular unassigned variable.
- The tree stops descending if an assignment violates a constraint.
- Goal Node: (1) The assignment is complete (2) No constraints is violated.

Draw the CSP search tree for 4-Queens.

We will apply a recursive implementation:

- If all variables are set, print the solution and terminate.
- Otherwise:
 - Pick an unassigned variable V and assign it a value.
 - Test the constraints corresponding with V and all other variables of them are assigned.
 - If a constraint is unsatisfied, return (backtrack).
 - Otherwise, go one lever deeper by invoking a recursive call.

Backtracking Search: The Algorithm

```
def BT(Level):
1. if all Variables assigned
2.
      PRINT Value of each Variable
   EXIT or RETURN
3.
                                        # EXIT for only one solution
                                        # RETURN for more solutions
   V := PickUnassignedVariable()
4.
5.
    Assigned[V] := TRUE
6.
    for d := each member of Domain(V) # the domain values of V
7.
      Value[V] := d
8.
   ConstraintsOK := TRUE
9.
      for each constraint C such that (i) V is a variable of C and
                                       (ii) all other variables of C are assigned:
10.
            if C is not satisfied by the set of current assignments:
11.
                   ConstraintsOK := FALSE
12.
     if ConstraintsOk == TRUE:
13.
           BT(Level+1)
14.
     Assigned[V] := FALSE  # UNDO as we have tried all of V's values
15.
     RETURN
```