Knowledge Representation

• This material is covered in chapters 7—9 and 12 of the text.
• Chapter 7 provides a useful motivation for logic, and an introduction to some basic ideas. It also introduces propositional logic, which is a good background for first-order logic.
• What we cover here is mainly covered in Chapters 8 and 9. However, Chapter 8 contains some additional useful examples of how first-order knowledge bases can be constructed. Chapter 9 covers forward and backward chaining mechanisms for inference, while here we concentrate on resolution.
• Chapter 12 covers some of the additional notions that have to be dealt with when using knowledge representation in AI.
Knowledge Representation

• What is knowledge?
• Information we have about the world we inhabit
 • Both the physical and mental world.
 • We have knowledge about many abstract mental constructs and ideas
• Besides knowledge we have various other mental attitudes and feelings about our environment.
 • John knows “…”
 • John fears “…”
 • Then things get complex: John knows that he fears “…”
 • So knowledge can take a variety of forms, some quite complex
Knowledge Representation

- What is Representation?
- Symbols standing for things in the world

CSC 384

Words we use in language

Symbols we use in mathematics
Knowledge Representation

• Can all knowledge be symbolically represented?
• No - we do not symbolically represent the “pixels” that we perceive at the back of our retina.
• So intelligent agents also perform a great deal of low level “non-symbolic reasoning” over their perceptual inputs.
• But higher level “symbolically represented” knowledge also seems to be essential
 • This is the kind of knowledge that we learn in school, by reading, etc.
• In this module we study symbolically represented knowledge
Reasoning

• What is reasoning (in the context of symbolically represented knowledge)?
 • Manipulating our symbols to produce new symbols that represent new knowledge.
 Deriving a new sentence
 • Typically “symbols” are sequences of symbols, e.g., words in language sequenced together to form sentences.
 • So we will develop methods for manipulating “sentences” to produce new “sentences”
Reasoning

- In language we can make up a huge variety of sentences.
- Each of these sentences makes some sort of claim or assertion about our world (mental or physical).
- These claims could be true or false.
 - I am anxious, so the sentence “I feel calm and relaxed.” Is false
- Reasoning aims to be **TRUTH PRESERVING**.
- If we use reasoning to manipulate a collection of **TRUE** sentences, we want the newly derived sentences to also be **TRUE**

- If our reasoning is truth preserving we say that is is **SOUND**
Reasoning

• A more subtle idea is **COMPLETENESS**.

• Completeness says that our reasoning system is powerful enough to produce **ALL** sentences that must be true given one current collection of true sentences.

• Completeness requires a formal characterization of “sentence” in order to answer the question of if we have produced **ALL** true sentences.
Knowledge Representation

• Consider the task of understanding a simple story.

• How do we test understanding?

• Not easy, but understanding at least entails some ability to answer simple questions about the story.
Example.

- Three little pigs
Example.

- Three little pigs
Example.

• Why couldn’t the wolf blow down the house made of bricks?

• What background knowledge are we applying to come to that conclusion?
 • Brick structures are stronger than straw and stick structures.
 • Objects, like the wolf, have physical limitations. The wolf can only blow so hard.
Why Knowledge Representation?

- Large amounts of knowledge are used to understand the world around us, and to communicate with others.
- We also have to be able to reason with that knowledge.
 - Our knowledge won’t be about the blowing ability of wolfs in particular, it is about physical limits of objects in general.
 - We have to employ reasoning to make conclusions about the wolf.
 - More generally, reasoning provides an exponential or more compression in the knowledge we need to store. I.e., without reasoning we would have to store an infeasible amount of information: e.g., Elephants can’t fit into teacups.
Logical Representations

- AI typically employs logical representations of knowledge.

- Logical representations useful for a number of reasons:
Logical Representations

• They are mathematically precise, thus we can analyze their limitations, their properties, the complexity of inference etc.

• They are formal languages, thus computer programs can manipulate sentences in the language.

• They come with both a formal syntax and a formal semantics.

• Typically, have well developed proof theories: formal procedures for reasoning at the syntactic level (achieved by manipulating sentences).

• In this module we will study First-Order logic, and a reasoning mechanism called resolution that operates on First-Order logic.
First Order Logic (FOL)

- Two components: Syntax and Semantics.
 - In a programming language we have a syntax for an if statement: “if <boolean condition>:<expressions>”
 - The if statement also has semantics: if <boolean condition> evaluates to TRUE then we execute <expressions>.
- Syntax gives the grammar or rules for forming proper sentences.
- Semantics gives the meaning.
Basic Semantic entities of FOL

• We have a set of objects \(D \). These are objects in the world that are important for our application.
 • Often we will want to form tuples of objects, e.g., \((d_1, d_2)\) where \(d_1 \in D \) and \(d_2 \in D \) are a pair of objects
 • A k-ary tuple is a subset of \(D^k = D \times D \times \ldots \times D \) the k-wise Cartesian product of \(D \)
• We can identify special sets of objects (subsets of \(D \)) that have some property in common. These sets are called properties.
 • E.g., female, male, children, adult could each need subsets that we identify as being useful in our application. If an object \(d \) is in the set male, we can say that \(d \) has the property male: \(\text{male}(d) \).
Basic Semantic entities of FOL

• Sometimes individual objects are not sufficient, we want to identify special groups (tuples) of objects that are related to each other. We call these sets relations.
 • E.g. \textit{married} might be a special subset of pairs that we wish to keep track of in our application.
• Finally, we might want to keep track of functions over our objects. \(f: D \rightarrow D \)
 • E.g. for \(d \in \text{student} \), we might want a function \(\text{faculty}(d) \) that gives the faculty the student is registered in.
 • More generally we might want \(f: D^k \rightarrow D \), i.e., a function of many arguments mapping \(D \).
Basic Syntactic symbols of FOL

• The syntax starts off with a different symbol for each basic semantic entity (objects, functions, predicates, relations) that we have decided to utilize.
• We get to decide what symbols we use (but of course want to use symbols that are easy to understand)
• These user specified symbols are called the **primitive symbols**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant symbols</td>
<td>A particular object (d \in D)</td>
</tr>
<tr>
<td>Function symbols</td>
<td>Some function (f: D^k \rightarrow D)</td>
</tr>
<tr>
<td>Predicate symbols</td>
<td>Some subset of (D)</td>
</tr>
<tr>
<td>Relation symbols</td>
<td>Some subset of (D^k)</td>
</tr>
</tbody>
</table>
Basic Syntactic symbols of FOL

- In addition we introduce some additional symbols that we will use to connect our basic symbols into sentences.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant symbols</td>
<td>A particular object (d \in D)</td>
</tr>
<tr>
<td>Function symbols</td>
<td>Some function (f: D^k \rightarrow D)</td>
</tr>
<tr>
<td>Predicate symbols</td>
<td>Some subset of (D)</td>
</tr>
<tr>
<td>Relation symbols</td>
<td>Some subset of (D^k)</td>
</tr>
<tr>
<td>Equality (commonly used relation)</td>
<td>Subset of (D^2 = { (d,d) \mid d \in D })</td>
</tr>
<tr>
<td>Variables (as many as we need)</td>
<td>An object (d \in D) (which particular object can vary)</td>
</tr>
<tr>
<td>Logical connectives: (\land,\lor,\neg,\rightarrow)</td>
<td>...defined below...</td>
</tr>
<tr>
<td>Quantifiers: (\forall,\exists)</td>
<td>...defined below...</td>
</tr>
</tbody>
</table>
Example

• Teaching CSC384, want to represent knowledge that would be useful for making the course a successful learning experience. So we might choose syntactic symbols like

• Objects:
 • Students, subjects, assignments, numbers.

• Predicates:
 • difficult(subject), CSMajor(student)

• Relations:
 • handedIn(student, assignment)

• Functions:
 • Grade(student, assignment) → number
First Order Syntax (the grammar)

• We start with our basic syntactic symbols constants, functions, predicates, relations, and variables.
 • Note: the function and relation symbols each have specific arities (the number of arguments it takes)

• From these we can build upon terms and sentences (formulas). Terms are ways of applying functions to build up new “names” for objects. Formulas, are
First Order Syntax - Terms

• Terms are used as names (perhaps complex nested names) for objects in the domain.

<table>
<thead>
<tr>
<th>Terms</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Constants</td>
<td>c, john, mary</td>
</tr>
<tr>
<td>Variables</td>
<td>x, y, z, ...</td>
</tr>
<tr>
<td>Function application</td>
<td>f(t₁, t₂, ..., tₖ)</td>
</tr>
<tr>
<td></td>
<td>tᵢ are already constructed terms</td>
</tr>
</tbody>
</table>

• 5 is a constant term: a symbol representing the number 5.
• john is a term — a symbol representing the person John.
• +(5,5) is a function application term — a new symbol representing the number 10.
First Order Syntax - Terms

• **Note**: constants are the same as functions taking zero arguments.

• Terms are names for objects (things in the world):
 • Constants denote specific objects
 • Functions map tuples of objects to other objects
 • bill, jane, father(jane), father(father(jane))
 • X, father(X), hotel7, rating(hotel7), cost(hotel7)
 • Variables like X are not yet determined, but they will eventually denote particular objects.
First Order Syntax - Sentences.

• Once we have terms we can build up sentences (formulas)
 Terms represent objects, formulas represent true/false assertions about these objects
First Order Syntax - Sentences.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic formula</td>
<td>(p(t)) or (r(t_1, t_2, \ldots, t_k))</td>
</tr>
<tr>
<td></td>
<td>(p) is a predicate symbol, (r) is a (k)-ary relation symbol, (t_i) are terms</td>
</tr>
<tr>
<td>Negation</td>
<td>(\neg f)</td>
</tr>
<tr>
<td></td>
<td>(F) is a formula</td>
</tr>
<tr>
<td>Conjunction</td>
<td>(f_1 \land f_2 \land \ldots \land f_k)</td>
</tr>
<tr>
<td></td>
<td>(f_i) are formulas</td>
</tr>
<tr>
<td>Disjunction</td>
<td>(f_1 \lor f_2 \lor \ldots \lor f_k)</td>
</tr>
<tr>
<td>Implication</td>
<td>(f_1 \rightarrow f_2)</td>
</tr>
<tr>
<td></td>
<td>(f_1) and (f_2) are formulas</td>
</tr>
<tr>
<td></td>
<td>(f_1) often called the antecedent, (f_2) the consequence</td>
</tr>
<tr>
<td>Existential</td>
<td>(\exists X. f)</td>
</tr>
<tr>
<td></td>
<td>(f) is a formula (X) is a variable</td>
</tr>
<tr>
<td>Universal</td>
<td>(\forall X. f)</td>
</tr>
</tbody>
</table>

Poole & Allin, CSC384, University of Toronto, Winter 2019
Intuition (formalized later).

- Atoms denote facts that can be true or false about the world
 - father_of(jane,bill), female(jane), system_down()
 - satisfied(client15), satisfied(C)
 - desires(client15, rome, week29), desires(X,Y,Z)
 - rating(hotel7, 4), cost(hotel7, 125)

- Other formulas generate more complex assertions by composing these atomic formulas.
 - Their truth is dependent on the truth of the atomic formulas in them
Semantics

• Formulas (syntax) can be built up recursively, and can become arbitrarily complex

• Intuitively, there are various distinct formulas (viewed as strings) that really are asserting the same thing
 • $\forall X, Y. \, \text{elephant}(X) \land \text{teacup}(Y) \to \text{largerThan}(X, Y)$
 • $\forall X, Y. \, \text{teacup}(Y) \land \text{elephant}(X) \to \text{largerThan}(X, Y)$

• To capture this equivalence and to make sense of complex formulas we utilize the semantics
Semantics

• A formal mapping from formulas to true/false assertions about our semantic entities (individuals, sets and relations over individuals, functions over individuals).

• The mapping mirrors the recursive structure of the syntax, so we can map any formula to a composition of assertions about the semantic entities.
Semantics - The language

• First, we must fix the particular first-order language we are going to provide semantics for. The **primitive** symbols included in the syntax defines the particular language.

$L(F,P,V)$

$F = \text{set of function (and constant symbols)}$

$\text{Each symbol } f \text{ in } F \text{ has a particular arity.}$

$P = \text{set of predicate and relation symbols.}$

$\text{Each relation symbol } r \in P \text{ has a particular arity. (The predicate symbols always have arity 1)}$

$V = \text{an infinite set of variables.}$
Semantics - Primitive Symbols

• An interpretation (model) specifies the mapping from the primitive symbols to semantic entities. It is a tuple \(\langle D, \Phi, \Psi, V \rangle \)
 • \(D \) is a non-empty set of objects (domain of discourse)
 • \(\Phi \) specifies the meaning of each primitive function symbol
 • Also handles the primitive constant symbols (these can be viewed as being zero-arity functions.
 • \(\Psi \) specifies the meaning of each primitive predicate and relation symbol.
 • \(V \) specifies the meaning of the variables.

• Note, the semantic entities that a syntactic symbol maps to is often called the meaning of the symbol or the denotation of the symbol
Semantics - Primitive Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant Symbol c</td>
<td>$\Phi(c) \in D$ (some particular object)</td>
</tr>
</tbody>
</table>
| K-ary function symbol f | $\Phi(f)$
Some particular function $D^k \rightarrow D$ |
| Predicate symbol p | $\Psi(p)$
Some particular subset of D |
| K-ary relation symbol r | $\Psi(r)$
Some particular subset of D^k |
| Variable x | $V(x) \in D$ (some particular object) |
Intuitions: Domain

• Domain D: d ∈ D is an *individual*

• E.g. \{craig, jane, grandhotel, le-fleabag, rome, protofino, 100, 110, 120 …\}

• We use underlined symbols to talk about domain individuals (syntactic symbols of the first-order language are not underlined)

• Domains often infinite, but we’ll use finite models to prime our intuitions
Intuitions: Φ

• Given k-ary function f and k individuals $d_1 \ldots d_k$, what individual does $f(d_1, \ldots, d_k)$ denote

 • Constants (0-ary functions) are mapped to individuals in D.
 • $\Phi(\text{client17}) = \text{craig}$, $\Phi(\text{hotel5}) = \text{le-fleabag}$, $\Phi(\text{rome}) = \text{rome}$
 • 1-ary functions are mapped to particular functions in $D \rightarrow D$
 • $\Phi(\text{rating}) = f_{\text{rating}}$:
 • $f_{\text{rating}}(\text{grandhotel}) = 5\text{stars}$
 • 2-ary functions are mapped to functions from $D^2 \rightarrow D$
 • $\Phi(\text{distance}) = f_{\text{distance}}$:
 • $f_{\text{distance}}(\text{toronto}, \text{sienna}) = 3256$
 • N-ary functions are mapped similarly
Intuitions: Ψ

- Given k-ary relation r, what does r denote
- 0-ary predicates are mapped to true or false.
 $\Psi(\text{rainy}) = \text{True} \quad \Psi(\text{sunny}) = \text{False}$
- 1-ary predicates are mapped to subsets of D.
 - $\Psi(\text{privatebeach}) = p_{\text{privatebeach}}$: (the subset of hotels that have a private beach)

 e.g. $p_{\text{privatebeach}} = \{\text{grandhotel, fourseasons}\}$
 - 2-ary predicates are mapped to subsets of D^2 (sets of pairs of individuals)
 - $\Psi(\text{location}) = p_{\text{location}}: p_{\text{location}}(\text{grandhotel, rome}) = \text{True} \quad p_{\text{location}}(\text{grandhotel, sienna}) = \text{False}$

 $\Psi(\text{available}) = p_{\text{available}}: p_{\text{available}}(\text{grandhotel, week29}) = \text{True}$
- n-ary predicates..subsets of D^n
Intuitions: v

- V exists to take care of quantification. As we will see the exact mapping it specifies will not matter.

- Notation: V[X/d] is a new variable assignment function.
 - Exactly like V, except that it maps the variable X to the individual d.
 - So for Y \neq X:
 \[V[X/d](Y) = V(Y) \]
 - For X:
 \[V[X/d](X) = d \]
Semantics — Terms

• Given language $L(F,P,V)$, and an interpretation $I = \langle D,\Phi,\Psi,V \rangle$ and a term t. $I(t)$ is the denotation of t under I.

<table>
<thead>
<tr>
<th>Term</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant Symbol c</td>
<td>$I(c) = \Phi(c) \in D$ (some particular object)</td>
</tr>
<tr>
<td>Variable x</td>
<td>$I(x) = V(x) \in D$ (some particular object)</td>
</tr>
</tbody>
</table>
| Function application $f(t_1,t_2,\ldots,t_k)$ | $I(f(t_1,t_2,\ldots,t_k)) = \Phi(f)(I(t_1), I(t_2),\ldots,I(t_k)) $
First we obtain the denotation of each argument under I, then we apply the function $\Phi(f)$ to these interpreted terms |

• Hence the terms always denote individuals under interpretation I
Semantics — Formulas

• Formulas will always be True or False under any interpretation \(I \).

<table>
<thead>
<tr>
<th>Formula</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic formula</td>
<td>(l(r(t_1, t_2, \ldots, t_k)) =)</td>
</tr>
<tr>
<td>(r(t_1, t_2, \ldots, t_k))</td>
<td>True if ((l(t_1), l(t_2), \ldots, l(t_k)) \in \Psi(r))</td>
</tr>
<tr>
<td></td>
<td>False otherwise</td>
</tr>
<tr>
<td></td>
<td>First we obtain the denotation of each argument under (I). Then we check if this tuple of interpreted</td>
</tr>
<tr>
<td></td>
<td>terms is in the set of tuples (\Psi(r))</td>
</tr>
</tbody>
</table>

• \(\Psi \) Maps \(r \) to a subset of \(D^k \) (a subset of \(k \)-ary tuples of individuals). So the atomic formula is true if its arguments are in the stated relation.
Semantics — Formulas

<table>
<thead>
<tr>
<th>Formula</th>
<th>Semantics</th>
</tr>
</thead>
</table>
| \(\neg f \) | \(I(\neg f) = \)
| | True if \(I(f) = \text{False} \)
| | False otherwise |

| \(f_1 \land f_2 \land \ldots \land f_k \) | \(I(f_1 \land f_2 \land \ldots \land f_k) = \)
| | True if \(I(f_i) = \text{True} \) for every \(i \)
| | False otherwise |

| \(f_1 \lor f_2 \lor \ldots \lor f_k \) | \(I(f_1 \lor f_2 \lor \ldots \lor f_k) = \)
| | True if \(I(f_i) = \text{True} \) for any \(i \)
| | False otherwise |

| \(f_1 \rightarrow f_2 \) | \(I(f_1 \rightarrow f_2) = \)
| | True if \(I(f_1) = \text{False} \) or \(I(f_2) = \text{True} \)
| | False otherwise |

- Standard rules for proposition logic that you would have seen before (check chap 7 if not)
Semantics — Formulas

<table>
<thead>
<tr>
<th>Formula</th>
<th>Semantics</th>
</tr>
</thead>
</table>
| $\exists X. f$ | $I(f) = \begin{cases}
\text{True} & \text{if for some } d \in D, \ I'(f) = \text{True} \\
\text{False} & \text{otherwise}
\end{cases}$ \\
$I' = \langle D, \Phi, \Psi, V'[X/d] \rangle$ |
| $\forall X. f$ | $I(f) = \begin{cases}
\text{True} & \text{if for all } d \in D, \ I'(f) = \text{True} \\
\text{False} & \text{otherwise}
\end{cases}$ \\
$I' = \langle D, \Phi, \Psi, V'[X/d] \rangle$ |

- Quantifiers. Exists checks if f is true under some different variable mapping for the variable X. Forall checks if f is true under all possible mappings of the variable X.
Example

\[D = \{ \text{bob, jack, fred} \} \]
\[I(\text{happy} = \{ \text{bob, jack, fred} \}) \]
\[I(\forall X. \text{happy}(X)) \]

1. \(\Psi(\text{happy})(v[X/\text{bob}](X)) = \Psi(\text{happy})(\text{bob}) = \text{True} \)

2. \(\Psi(\text{happy})(v[X/\text{jack}](X)) = \Psi(\text{happy})(\text{jack}) = \text{True} \)

3. \(\Psi(\text{happy})(v[X/\text{fred}](X)) = \Psi(\text{happy})(\text{fred}) = \text{True} \)

Therefore \(I(\forall X. \text{happy}(X)) = \text{True} \).