
CSC384
Game Tree Search

Part 2

Bahar Aameri & Sonya Allin

Winter 2020



Credits

These slides are drawn from or inspired by a multitude of sources including :

Faheim Bacchus
Sheila McIlraith
Andrew Moore
Hojjat Ghaderi
Craig Boutillier
Jurgen Strum
Shaul Markovitch

CSC384 | University of Toronto 2



Alpha-Beta Pruning

• There are ways to avoid examining the entire tree to make correct Minimax decision.

• When using depth-first search of a game tree:

– After generating value for only some of s’s children we can prove that we never
reach s in a Minimax strategy.

– So we need NOT generate or evaluate any further children of s.
These other children can be pruned.

CSC384 | University of Toronto 3



Cutting Max Nodes (Alpha Cuts)

At a Max node s:
↵s: The highest value of s’s children examined so far (changes as children of s are examined).
�: The best option forMIN (i.e., lowest value) found so far (fixed as children of s are examined);

CSC384 | University of Toronto 4





























Cutting Max Nodes (Alpha Cuts)

If ↵s becomes greater than or equal to �, we can stop expanding the children of s:
Min will never choose to move from s’s parent to s since it would choose one of s’s lower
valued siblings.

CSC384 | University of Toronto 5



















































Cutting Min Nodes (Beta Cuts)

At a Min node s:
↵: The best option for MAX (i.e., highest value) found so far (fixed as children of s are exam-
ined).
�s: The lowest value of s’s children examined so far (changes as children of s are examined);

CSC384 | University of Toronto 6































Cutting Min Nodes (Beta Cuts)

• If ↵ becomes greater than or equal to �s, we can stop expanding the children of s:
Max will never choose to move from s’s parent to s since it would choose one of s’s
higher value siblings.

CSC384 | University of Toronto 7























.

CSC384 | University of Toronto 8























































































Alpha-Beta Pruning

↵: Best already explored option along the path to the root for MAX.
�: Best already explored option along the path to the root for MIN.

Alpha-Beta Pruning:

• Set initial values: ↵ = �1 and � = 1

• While backing the utility values up the tree, identify ↵ and � for each node.

• At every node s, if ↵ � �, prune (remaining) children of s.

↵-cuts: Pruning of MAX nodes.
�-cuts: Pruning of MIN nodes.

CSC384 | University of Toronto 9





Alpha-Beta Pruning – Example

CSC384 | University of Toronto 10























































































































































































































































































































































































































































































CSC384 | University of Toronto 11



Alpha-Beta Pruning Implementation
def AlphaBeta(s,Player,alpha,beta):
// Return Utility of state s given that Player is MIN or MAX
1. If s is TERMINAL
2. Return U(s) # Return terminal states utility
3. ChildList = s.Successors(Player)
4. If Player == MAX
5. ut_val = -infinity
6. for c in ChildList
7. ut_val = max(ut_val, AlphaBeta(c,MIN,alpha,beta))
8. If alpha < ut_val
9. alpha = ut_val
10. If beta <= alpha: break
11. return ut_val
12. Else # Player is MIN
13. ut_val = infinity
14. for c in ChildList
15. ut_val = min(ut_val, AlphaBeta(c,MAX,alpha,beta))
16. If beta > ut_val
17. beta = ut_val
18. If beta <= alpha: break
19. return ut_val

CSC384 | University of Toronto 12



Ordering of Moves

• For MIN nodes the best pruning occurs if the best move for MIN (child yielding lowest
value) is explored first.

• For MAX nodes the best pruning occurs if the best move for MAX (child yielding highest
value) is explored first.

• We don’t know which child has highest or lowest value without doing all of the work!
But we can use heuristics to estimate the value, and then choose the child with highest
(lowest) heuristic value.

CSC384 | University of Toronto 13



E�ectiveness of Alpha-Beta Pruning

• With no pruning,O(bd) nodes are explored, which makes the run time of a search with
pruning the same as plain Minimax.

If, however, the move ordering for the search is optimal (meaning the best moves are
searched first), the number of nodes we need to search using alpha beta pruning is
O(bd/2).

• In Deep Blue, they found that alpha-beta pruningmeant the average branching factor
at each node was about 6 instead of 35.

CSC384 | University of Toronto 14



Practical Matters

• Real games are too large to enumerate tree.
Example:

– Chess branching factor is roughly 35.

– Depth 10 tree: 2,700,000,000,000,000 nodes

– Even Alpha-Beta pruning won’t help here!

• We must limit depth of search tree:

– Must stop the search at some non-terminal nodes.

– We must make heuristic estimates about the values of the non-terminal posi-
tions where we terminate the search.

– These heuristics are often called evaluation functions.

– Evaluation functions are often learned.

CSC384 | University of Toronto 15



Heuristics in Games

Examples of Heuristics in Games:

• Tic Tac Toe:
h(n) = [# of 3 lengths that are left open for player A] - [# of 3 lengths that are left
open for player B].

• Chess: Alan Turing’s function
h(n) = A(n)/B(n) where A(n) is the sum of the point value for player A’s pieces and
B(n) is the sum for player B.

• Many evaluation functions can be specified as a weighted sum of features:
h(n) = w1 ⇥ feature1(n) + w2 ⇥ feature2(n) + ...wi ⇥ featurei(n).
The weights can be learnt.

CSC384 | University of Toronto 16



An Aside on Large Search Problems

• Inability to expand tree to terminal nodes is relevant even in standard search: Often
we can’t expect the search to reach a goal by expanding full frontier.

• Real-time (or online) Search: We limit our look-ahead, and make moves before we
actually know the true path to the goal.

• In real-time search, we use the heuristic function not just to guide our search, but also
to commit to moves we actually make.
In general, guarantees of optimality are lost, but we reduce computational/memory
expense dramatically.

CSC384 | University of Toronto 17



Real-time Search Graphically

1. We run our favorite search algorithm until we are forced
to make a move or run out of memory.
Note: no leaves are goals yet.

2. We use evaluation function f(n) to decide which path
looks best (let’s say it is the red one).

3. We take the first step along the best path (red), by actually
making that move.

4. We restart search at the node we reach by making that
move.

CSC384 | University of Toronto 18






