CSC384
Game Tree Search
Part 1

Bahar Aameri & Sonya Allin

Winter 2020

These slides are drawn from or inspired by a multitude of sources including :

Faheim Bacchus
Sheila Mcllraith
Andrew Moore
Hojjat Ghaderi
Craig Boutillier
Jurgen Strum
Shaul Markovitch

CSC384 | University of Toronto 2

Game Tree Search

¢ Chapter 5
- Chapter 5.1, 5.2, 5.3 cover some of the material we cover here.

- Section 5.5 extends the ideas to games with uncertainty (We won’t cover that
material but it makes for interesting reading).

- Section 5.6 has an interesting overview of State-of-the-Art game playing pro-
grams.

CSC384 | University of Toronto 3

Generalizing Search Problem

« Sofar our search problems have assumed agent has complete control of environment:
— State does not change unless the agent changes it.
- All we need to compute is a single path to a goal state.
« This assumption is not always reasonable:
- Stochastic environment (e.g., the weather, traffic accidents).
- Other agents whose interests conflict with yours.
Search can find a path to a goal state, but the actions might not lead you to the

goal as the state can be changed by other agents.

* We need to generalize our view of search to handle state changes that are not in the
control of our agent.

- 2 or more agents;

— All agents acting to maximize their own profits.

CSC384 | University of Toronto 4

General Games

What makes something a game?
* There are two (or more) agents making changes to the world (the state).

* Each agent has their own interests and goals.
Each agent assigns different costs to different paths/states.

* Each agent independently tries to alter the world so as to best benefit itself.

« Co-operation can occur but only if it benefits both parties.

What makes games hard?
* How you should play depends on how you think the other person will play;
* How the other person plays depends on how they think you will play.

Hence, a joint-dependency.

CSC384 | University of Toronto 5

Properties of Games

* Two player:
Note: Algorithms presented can be extended to multiplayer games, but multi-player
games can involve alliances where some players cooperate to defeat another player
(see Chapter 5.2.2)

 Finite: Finite number of states and moves from each state.

- Techniques can be extended to deal with infinite games by applying heuristic
cutoffs.

- Whenthe gameis too large finite becomes as bad as infinite and heuristic cutoffs
need to be used.

» Zero-sum: Fully competitive, total payoff to all players is constant.
If one player gets a higher payoff, the other player gets a lower payoff.
Example: Poker — you win what the other player lose

« Deterministic: No chances involved, no dice, or random deals of cards, or coin flips.

« Perfect Information: All aspects of the state are fully observable.
Example: Chess.

CSC384 | University of Toronto 6

Which of these are: 2-player zero-sum discrete finite
deterministic games of perfect information

* Two player: punt

SCRABBIE

+ Zero-Sum: In any outcome of any
game, Player A's gains equal player B's
losses.

+ Discrete: All game states and decisions
are discrete values.

* Finite: Only a finite number of states and
decisions.

+ Deterministic: No chance (no die
rolls).

+ Perfect information: Both players
can see the state, and each decision is

made sequentially (no simultaneous

moves).

CSC384 [University of Toronto

Which of these are: 2-player zero-sum discrete finite
deterministic games of perfect information

* Two player: puh!

= Zero-sum: In any outcome of any
game, Player A's gains equal player B's
losses.

* Discrete: Algame states and decisions
are discrete values.

* Finite: Only a finite number of states and
decisions.

* Deterministic: No chance (no die
rolis).

« Perfect information: Both players
can see the state, and each decision is

made sequentially (no simultaneous

moves).

CSC384 [University of Toronto

Game 1: Rock, Paper, Scissors

* Scissors cut paper, paper covers rock, rock smashes scissors

* Represented as a matrix:
Player I chooses a row, Player II chooses a column.

* 1:win
0: tie
-1: loss

R{ ofof -1j1 | -l
-] oo [-1/]
s|-I - {op

CSC384 | University of Toronto 9

Game 2: Prisoner’s Dilemma

* Two prisoners in separate cells.
The sheriff doesn’t have enough evidence to convict them.
They agree ahead of time to both deny the crime (they will cooperate).

« If one confesses and the other doesn’t: C
Oa on
- Confessor goes free; P C “CSS
— Other sentenced to 4 years.

—

CO;P \/l Lr/O

- both sentenced to 3 years. L_———

» If both confess:

» If both cooperate (neither confesses):
- both sentenced to 1 year.

Coness| O/ | 3/3

Payoff: Lr Minns Sentence

CSC384 | University of Toronto 10

Extensive Form Two-Player Zero-Sum Games

« The previous games are simple "one shot" games.

* Many games extend over multiple moves turn-taking: players act alternatively.
Examples: chess, checkers, etc.

CSC384 | University of Toronto 11

Two-Player Zero-Sum Game - Definition

A Two-Player Zero-Sum game consists of the following components:

* Two players Max and Min.

» A set of positions P (states of the game).

* A starting position p € P (where game begins).

+ A set of Terminal positions 7' C P (where game can end).

» A set of directed edges)/, between some positions, representing Max’s moves.
» A set of directed edges F);;,, between some positions, representing Min’s moves.

A utility (or payoff) function U : T' — R, representing how good each terminal state
is for player Max.

Why don’t we need a utility function for Min? V) (f)

-U(+)

CSC384 | University of Toronto 12

Turn=Min(O) Turn=Max(X)
X X | X
s""(\ . >3- 0
o]
Min(O) Max(X)
X | X Ol X |X
<
\‘\ Q! (‘\\(\
xef 0 xef 0
U=+1 U=-1
- e I

CSC384 [University of Toronto

Game Tree

* A Game Tree consists of layers reflect alternating moves between Max and Min.

* Root is start state.

< Starting with Max, players alternate moves.

* Game State: a state-player pair, specifies the current state and whose turn it is.
——

* Game ends when some terminal p € T is reached.

« Utility function and terminals replace goals:

- Terminal nodes t are labeled with utilities U (t).

- Max gets U(t), Min gets —U (¢) for terminal node t.

CSC384 | University of Toronto 14

Min
AN
x[O X[0] [X
Max 0 eee
Min A
(B
I ES
Ji) = |

CSC384 | University of Toronto

Game Playing Strategies

* Max wants to maximize the terminal payoff.
* Min wants to minimize the terminal payoff.

* Max doesn’t decide which terminal state is reached alone.
After Max moves to a state, Min decides which subsequent state to move to.

» Thus Max must have a strategy:

— Must know what to do for each possible move of Min.

— One sequence of moves will not suffice: “What to do” will depend on how Min
will play.

CSC384 | University of Toronto 16

Minimax Strategy

* Minimax Strategy: Assuming that the other player will always play its best move, play
a move that will minimize the payoff that could be gained by the other player.

* Minimizing the other player’s payoff to maximize yours.

Minimax plays it safe!

CSC384 | University of Toronto 17

Minimax Strategy

30 |:| max node (max plays)
O min node (min plays)

/N A terminal (game ends)

(D OGO
VA NN
VVNV.V-V-V.N

3 9 -10 2

-6

CSC384 | University of Toronto 18

max node (max plays)
s0 L1 e ;
() min node (min plays)

/NA terminal (game ends)
6 ® ®

t
-6 4 9 -10 2

Minimax Strategy:
* Max always plays a move to change the state to the highest valued child.
* Min always plays a move to change the state to the lowest valued child.

If Min plays poorly (does not always move to lowest value child), Max could do better, but
never worse.

CSC384 | University of Toronto 19

Minimax Strategy

30 |:| max node (max plays)
O min node (min plays)

/N /\ terminal (game ends)
@ @ @ —> —la
2NN

AVAVAVIVAVANVAN

-10 2

H Man %0 e to Si, MIN Noes 4o 12
MiniULh),U(f'\.)auﬂ"s)ﬁ -6

CSC384 | University of Toronto 20

“-E M~ obo% o 91,),/1/\'1/\ Qoes to fq—
V"\?v\i UC‘fl-e);U(tg)hﬁ = —> ty

‘:? MAN ao% +to 83 5 MUA Qoes to 16

raen K u(¥e), U(+1)q1’:£°’_’7 be

frnm o L U501 U0 005w

CSC384 | University of Toronto

Minimax Strategy

* We can compute a utility (aka MinMAXx value) for the non-terminal states by assuming
both players always play their best move.

* Back the utility values up the tree:

U(s) if s is a terminal (U is defined
(U is defined for all terminals
U(s) = as part of input)
min{U(c) : cis a child of s} if sis a Min node.
max{U(c) : cis a child of s} if sis a Max node.

* The values U(s) labeling each state s are the values that Max will achieve in that state
if both Max and Min play their best move.

CSC384 | University of Toronto 22

-
Pall
y \
.
/ \
o \
4 .
0 J
i ~
/ N\
/
/
/ yd
7 /

HI lII[IIII 11

DoOoooc
05-333-302-23525-50151-30-55-33 2

Max

Min

Max

Min

Max

Min

CSC384 | University of Toronto

23

o] \1

ol] 2 1] 2
0[] 20 0[] 101 S0 2=
0C] 3Ll 2i8 o) 101 501 -30] 2(]

/

of] 301 301 -3C1 -200 201 501 ofd 10 -3[] -501 -3 20

OO0 ooooooadn L
05-333-302-23525-50151-30-55-332

Max

Min

Max

Min

Max

Min

CSC384 [University of Toronto

24

Depth-First Implementation of Minimax

« Building the entire game tree and backing up values gives each player their strategy.

* However, the game tree is exponential in size and might be too large to store in mem-
ory.

* We can save space by computing the minimax values with a depth-first implementation
of minimax.
Although run-time complexity is still exponential.

* We run the depth-first search after each move to compute what is the next move for
the MAX player.

« This avoids explicitly representing the exponentially sized game tree: we just compute
each move as it is needed.

CSC384 | University of Toronto 25

Depth-First Implementation of Minimax

def DFMiniMax(s, Player):
//Return Utility of state s given that Player is MIN or MAX
1. If s is TERMINAL
2. Return U(s) # Return terminal states utility,
specified as part of game
//Apply Player’s moves to get successor states.
3. ChildList = s.Successors(Player)
4. If Player == MIN
5. return minimum of DFMiniMax(c, MAX) over c € ChildList
6. Else # Player is MAX
7 return maximum of DFMiniMax(c, MIN) over c € ChildList

CSC384 | University of Toronto 26

o

Min(s2, s6)

Nﬁx

(s7, 510)

s2 Max(t3, t4,t5)

s6

7

Min(ts, t9)

/S\M /&'\

>

2\

l\ — /X 7\
9,

CSC384 | University of Toronto

27/

Depth-First Implementation of Minimax

* The game tree has to have finite depth for DF Implementation to work.
* We must traverse the entire search tree to evaluate all options.

+ Time Complexity: O(b%) (both a BEST and WORSE case scenario), where b is the num-
ber of legal moves at each state, and d maximum depth of the tree.

* Space Complexity: O(bd).

CSC384 | University of Toronto 28

