1 Bayesian Network Problems

1. Given the Bayesian Network about, determine:
(a) if P 1 and P 5 are independent of P 6 given P 8

FALSE, the path through P3, P4 and P7 is not blocked; neither P1 and P6 or P5 and P6 are d-separated.
(b) if P 2 is independent of P 6 given no information

TRUE, the path is blocked by node P7.
(c) if P 1 is independent of P 2 given P 8

FALSE, P1 and P2 converge on P4 and the path between them is un-blocked by P8.
(d) if P 1 is independent of P 2 and P 5 given P 4

FALSE, P4 unblocks the path of information from P2 and P3 is not blocked.

2. Given the Bayesian Network above, determine if:
(a) A is independent of C given F .

Answer: False. There is an unblocked (or not d-separated) path from A to B to E, and then thru F to G to C. Note that without information about F, the path from E to G is blocked.
(b) G is independent of D given E .

Answer: False. There is an unblocked (or not d-separated) path from D to E to B, and then to G.
(c) C is independent of D .

Answer: True. The fact that we have no information about E d-separates the path from D to B . No information about F d-separates E and G. So information about D is d-separated from paths to C both via F and E .

Given this network, calculate $P(B \mid D=$ false $), P(B \mid E=$ true $)$ and $P(B \mid F=$ false $)$.
Answer Part 1:
$P(B \mid D=$ false $)=$
$\sum_{A} \sum_{C} \sum_{E} \sum_{F} P(A, B, C, D=$ false, $E, F) / \sum_{A} \sum_{B} \sum_{C} \sum_{E} \sum_{F} P(A, B, C, D=$ false $, E, F)$
$P(A, B, C, D=$ false $, E, F)=P(A) P(B \mid A) P(C \mid A, B) P(D=$ false $\mid C) P(E \mid F, B) P(F)$ so
$\sum_{A} \sum_{C} \sum_{E} \sum_{F} P(A, B, C, D=$ false, $E, F)$
$=\sum_{A} \sum_{C} \sum_{E} \sum_{F} P(A) P(B \mid A) P(C \mid A, B) P(D=$ false $\mid C) P(E \mid F, B) P(F)$
$=\sum_{A} P(A) P(B \mid A) \sum_{C} P(C \mid A, B) P(D=$ false $\mid C) \sum_{F} P(F) \sum_{E} P(E \mid F, B)$
Note that $\sum_{E} P(E \mid F, B)$ results in a table of 1 s and so multiplying this by $\sum_{F} P(F)$ will result in 1s. Both of E and F are not relevant to the query (and can be identified by the relevance algorithm presented in class). We therefore focus on eliminating C and A.

Eliminate C: $f_{1}(A, B)=\sum_{C} P(C \mid A, B) P(D=$ false $\mid C)$
$f_{1}(a, b)=P(c \mid a, b) P(D=$ false $\mid c)+P(-c \mid a, b) P(D=$ false $\mid-c)$
$f_{1}(a,-b)=P(c \mid a,-b) P(D=$ false $\mid c)+P(-c \mid a,-b) P(D=$ false $\mid-c)$
$f_{1}(-a, b)=P(c \mid-a, b) P(D=$ false $\mid c)+P(-c \mid-a, b) P(D=$ false $\mid-c)$
$f_{1}(-a,-b)=P(c \mid-a,-b) P(D=$ false $\mid c)+P(-c \mid-a,-b) P(D=$ false $\mid-c)$
Eliminate A: $f_{2}(B)=\sum_{A} P(A) P(B \mid A) f_{1}(A, B)$
$f_{2}(b)=P(a) P(b \mid a) f_{1}(a, b)+P(-a) P(b \mid-a) f_{1}(-a, b)$
$f_{2}(-b)=P(a) P(-b \mid a) f_{1}(a,-b)+P(-a) P(-b \mid-a) f_{1}(-a,-b)$
Normalize: $P(B \mid D=$ false $)=$ normalize $\left(f_{2}(B)\right)=f_{2}(B) /\left(f_{2}(b)+f_{2}(-b)\right)$

Answer Part 2:

```
\(P(B \mid E=\) true \()=\)
\(\sum_{A} \sum_{C} \sum_{D} \sum_{F} P(A, B, C, D, E=\) true,\(F) / \sum_{A} \sum_{B} \sum_{C} \sum_{D} \sum_{F} P(A, B, C, D, E=\) true,\(F)\)
\(P(A, B, C, D, E=\) true,\(F)=P(A) P(B \mid A) P(C \mid A, B) P(D \mid C) P(E=\) true \(\mid F, B) P(F)\) so
\(\sum_{A} \sum_{C} \sum_{D} \sum_{F} P(A, B, C, D, E=\) true,\(F)\)
\(=\sum_{A} \sum_{F} \sum_{C} \sum_{D} P(A) P(B \mid A) P(C \mid A, B) P(D \mid C) P(E=\) true \(\mid F, B) P(F)\)
\(=\sum_{A} P(A) P(B \mid A) \sum_{F} P(E=\operatorname{true} \mid F, B) P(F) \sum_{C} P(C \mid A, B) \sum_{D} P(D \mid C)\)
```

Note that $\sum_{D} P(D \mid C)$ results in a table of 1 s and $\sum_{C} P(C \mid A, B)$ is also a table of 1 s . Both of C and D are not relevant to the query (and can be identified by the relevance algorithm presented in class). We therefore focus on eliminating A and F.

Eliminate F: $f_{1}(B)=\sum_{F} P(E=\operatorname{true} \mid F, B) P(F)$
$f_{1}(b)=P(e \mid f, b) P(f)+P(e \mid-f, b) P(-f)$
$f_{1}(-b)=P(e \mid f,-b) P(f)+P(e \mid-f,-b) P(-f)$
Eliminate A: $f_{2}(B)=\sum_{A} P(A) P(B \mid A)$
$f_{2}(b)=P(b \mid a) P(a)+P(b \mid-a) P(-a)$
$f_{2}(-b)=P(-b \mid a) P(a)+P(-b \mid-a) P(-a)$
Normalize: $P(B \mid E=$ true $)=$ normalize $\left(f_{1}(B) f_{2}(B)\right)=f_{1}(B) f_{2}(B) /\left(f_{1}(b) f_{2}(b)+f_{1}(-b) f_{2}(-b)\right)$
Answer Part 3:
$P(B \mid F=$ false $)=$
$\sum_{A} \sum_{C} \sum_{D} \sum_{E} P(A, B, C, D, E, F=$ false $) / \sum_{A} \sum_{B} \sum_{C} \sum_{D} \sum_{E} P(A, B, C, D, E, F=$ false $)$
Note however that F is d-separated from B by E. This means $P(B \mid F)=P(B)$ and can be computed directly from input CPTs.

$$
P(B)=\sum_{A} P(A, B)=\sum_{A} P(B \mid A) * P(A)
$$

3. Given the Bayesian Network Below:

| $P(A=$ true $)=0.75$ | | $P(C=$ true $\mid A=$ true,$B=$ true $)$ | $=0.8$ |
| :--- | :--- | :--- | :--- | :--- |
| | | $P(C=$ true $\mid A=$ true,$B=$ false $)$ | $=0.8$ |
| | | $P(C=$ true $\mid A=$ false $B=$ true $)$ | $=0.25$ |
| | | $P(C=$ true $\mid A=$ false $B=$ false $)=0.25$ | |
| $P(B=$ true $\mid A=$ true $)$ | $=0.9$ | | |
| $P(B=$ true $\mid A=$ false $)=0.8$ | | | |

(a) Are any variables in the graph conditionally independent of each other? Why or why not?

Answer: Even tho there is a line between C and B, C and B are independent given A. This is because $P(C \mid A, B)=P(C \mid A)$ for all combinations of A, B and C . This should tell you that while lack of a line can indicate independences (or conditional independences) between variables, presence of a line does not necessarily indicate independences (or conditional independences).
(b) Calculate $P(A=\operatorname{true} \mid B=$ true, $C=$ true $)$

Answer:

$$
\begin{aligned}
& P(A=\text { true } \mid B=\text { true }, C=\text { true })=P(A=\text { true }, B=\text { true }, C=\text { true }) / P(B=\text { true, } C=\text { true }) \\
& =P(A=\text { true }, B=\text { true }, C=\text { true }) / \sum_{A} P(A, B=\text { true, } C=\text { true }) \\
& =P(C=\text { true } \mid A=\text { true }, B=\text { true }) * P(B=\text { true } \mid A=\text { true }) * P(A=\text { true }) / \sum_{A} P(C= \\
& \text { true } \mid A, B=\text { true }) * P(B=\text { true } \mid A) * P(A) \\
& =(0.75 * 0.9 * 0.8) /((0.75 * 0.9 * 0.8)+(0.25 * 0.8 * 0.2))=0.92
\end{aligned}
$$

Note that this can be simplified if you substitute $P(C \mid A, B)=P(C \mid A)$ in the equations above.

