
CSC384
Knowledge Representation

Part 2

Bahar Aameri & Sonya Allin

Summer 2020



Credits

We gratefully acknowledge those who have contributed to these slides, most recently BaharAameri, who merged and augmented slides from Yongmei Liu and a CSC384 slide deck his-torically developed by Craig Boutilier, Fahiem Bacchus, Sheila McIlraith, Sonya Allin, HojjatGhaderi, and others. We also acknowledge the use of material written by Michael Winter,and the use of material originating from slides and the book by Ron Brachman and HectorLevesque.

CSC384 | University of Toronto 2



Logical Consequence
Let Φ be a set of sentences and A be a sentence.
A is a logical consequence of Φ (denoted by Φ |= A) i� for every structure M,if M |= Φ then M |= A.

If A is a logical consequence of Φ, then there is no M such that M |= Φ ∪ {¬A}.In other words,Φ ∪ {¬A} is unsatisfiable.

Example:Assume Φ includes the following sentences:
∀x∀y∀z[(above(z, y) ∧ above(y, x)) → above(z, x)]

above(c1, c2c1, c2c1, c2) ∧ above(c2, c3c2, c3c2, c3)

CSC384 | University of Toronto 3




























































Knowledge-based Systems
Knowledge Base (KB): A collection of sentences that represents what the agent/program be-lieves about the world.

Sentences in the KB are explicit knowledge of the agent.Logical consequences of the KB are implicit knowledge of the agent.
Example: Suppose KB includes the following sentences:

• The capital of Canada is Ottawa
• The largest province in Canada is Quebec
• The provinces neighbouring Quebec are Ontario, New Brunswick, and Newfoundland

Implicit knowledge of the KB:Ontario, New Brunswick and Newfoundland are the neighbouring provinces of the largestprovince in Canada.

CSC384 | University of Toronto 4



Proof Procedures
• To compute implicit knowledge of the KB (i.e., logical consequences) we need a me-

chanical procedure that can be implemented as an algorithm.
• This would allow us to reason with our knowledge:

– Represent the knowledge as logical formulas.
– Apply the procedure for generating logical consequences

• Mechanical proof procedures work by manipulating formulas.They do not know or care anything about interpretations.Nevertheless they respect the semantics of interpretations!

CSC384 | University of Toronto 5



Proof Procedures

A proof procedure is sound if whenever it produces a sentence A by manipulating sentencesin a KB, then A is a logical consequence of KB (i.e., KB |= A).That is, all conclusions arrived at via the proof procedure are correct: they are logical conse-quences.

A proof procedure is complete if it can produce all logical consequences of KB.That is, if KB |= A, then the procedure can produce A.

We will develop a sound and complete proof procedure for first-order logic called Resolution.

CSC384 | University of Toronto 6



Resolution
Resolution works with formulas expressed in clausal form.

A literal is an atomic formula or the negation of an atomic formula.
Example: dog(fidofidofido),¬cat(fidofidofido), P (x),¬Q(y)

A clause is a disjunction of literals:
Example:
P (x) ∨ ¬Q(x, y)

¬owns(fido, fredfido, fredfido, fred) ∨ ¬dog(fidofidofido) ∨ person(fredfredfred)

A clausal theory is a conjunction of clauses.
Example:(
P (x) ∨ ¬Q(x, y)

)
∧(

¬owns(fido, fredfido, fredfido, fred) ∨ ¬dog(fidofidofido) ∨ person(fredfredfred)
)

CSC384 | University of Toronto 7









Resolution
The resolution proof procedure uses only one inference rule:(
Q(x, y) ∨ P (aaa)

) and (
R(y) ∨ ¬P (aaa)

)

(
Q(x, y) ∨ P (aaa)

) and ¬P (aaa)

P (aaa) and ¬P (aaa)

We denote a contradiction by an empty clause: ()

CSC384 | University of Toronto 8





























































































Resolution by Refutation

Resolution by Refutation:

• Assume ¬A is true to generate a contradiction. (Refutation)
• Convert ¬A and all sentences in KB to a clausal theory C.
• Resolve the clauses in C until an empty clause is obtained.

CSC384 | University of Toronto 9






























Resolution by Refutation: Example
Want to prove likes(clyde,peanutsclyde,peanutsclyde,peanuts) from:

1. elephant(clydeclydeclyde) ∨ giraffe(clydeclydeclyde)

2. ¬elephant(clydeclydeclyde) ∨ likes(clyde, peanutsclyde, peanutsclyde, peanuts)

3. ¬giraffe(clydeclydeclyde) ∨ likes(clyde, leavesclyde, leavesclyde, leaves)

4. ¬likes(clyde, leavesclyde, leavesclyde, leaves)

Assume: 5. ¬likes(clyde, peanutsclyde, peanutsclyde, peanuts)

¬likes(clyde, peanutsclyde, peanutsclyde, peanuts) ¬elephant(clydeclydeclyde) ∨ likes(clyde, peanutsclyde, peanutsclyde, peanuts)

¬elephant(clydeclydeclyde) elephant(clydeclydeclyde) ∨ giraffe(clydeclydeclyde)

giraffe(clydeclydeclyde) ¬giraffe(clydeclydeclyde) ∨ likes(clyde, leavesclyde, leavesclyde, leaves)

likes(clyde, leavesclyde, leavesclyde, leaves) ¬likes(clyde, leavesclyde, leavesclyde, leaves)

CSC384 | University of Toronto 10
























































































































Resolution by Refutation: Example
Want to prove likes(clyde,peanutsclyde,peanutsclyde,peanuts) from:

1. elephant(clydeclydeclyde) ∨ giraffe(clydeclydeclyde)

2. ¬elephant(clydeclydeclyde) ∨ likes(clyde, peanutsclyde, peanutsclyde, peanuts)

3. ¬giraffe(clydeclydeclyde) ∨ likes(clyde, leavesclyde, leavesclyde, leaves)

4. ¬likes(clyde, leavesclyde, leavesclyde, leaves)

Resolution by Refutation Proof:
• ¬likes(clyde, peanutsclyde, peanutsclyde, peanuts)[5.]

• 5&2: ¬elephant(clydeclydeclyde)[6.]

• 6&1: giraffe(clydeclydeclyde)[7.]

• 7&3: likes(clyde, leavesclyde, leavesclyde, leaves)[8.]

• 8&4: ()

CSC384 | University of Toronto 11



Resolution by Refutation

To develop a complete resolution proof procedure for first-order logic we need :
1. A way of converting KB and A into clausal form.
2. A way of doing resolution even when we have variables (unification).

CSC384 | University of Toronto 12



Conversion to Clausal Form
1. Eliminate Implications.
2. Move Negations Inwards (and simplify ¬¬).
3. Standardize Variables.
4. Skolemization.
5. Convert to Prenex Form.
6. Distribute Conjunctions over Disjunctions.
7. Flatten nested Conjunctions and Disjunctions.
8. Convert to Clauses.

CSC384 | University of Toronto 13









Eliminate Implications

Implication Rule: A→ B i� ¬A ∨B

∀x
[
P (x)→

((
∀y[P (y)→P (f(x, y))]

)
∧ ¬
(
∀y[¬q(x, y) ∧ P (y)]

))]

Eliminate Implication: ∀x
[
¬P (x)∨

((
∀y[¬P (y)∨P (f(x, y))]

)
∧ ¬
(
∀y[¬q(x, y) ∧ P (y)]

))]

CSC384 | University of Toronto 14


















Rules for Simplifying and Moving Negations Inwards
• ¬¬A i� A

• ¬(A ∧B) i� ¬A ∨ ¬B

• ¬(A ∨B) i� ¬A ∧ ¬B

• ¬∀xA i� ∃x¬A

• ¬∃xA i� ∀x¬A

CSC384 | University of Toronto 15



Simplify and Move Negations Inwards

∀x
[
¬P (x) ∨

((
∀y[¬P (y) ∨ P (f(x, y))]

)
∧ ¬
(
∀y[¬Q(x, y) ∧ P (y)]

))]

Move Negations Inwards:
∀x
[
¬P (x) ∨

((
∀y[¬P (y) ∨ P (f(x, y))]

)
∧
(
∃y[¬¬Q(x, y)∨¬P (y)]

))]

Simplify Negations:
∀x
[
¬P (x) ∨

((
∀y[¬P (y) ∨ P (f(x, y))]

)
∧
(
∃y[Q(x, y) ∨ ¬P (y)]

))]

CSC384 | University of Toronto 16
















































Standardize Variables

Standardize Variables: Rename variables so that each quantified variable is unique.

∀x
[
¬P (x) ∨

((
∀y[¬P (y) ∨ P (f(x, y))]

)
∧
(
∃y[Q(x, y) ∨ ¬P (y)]

))]

∀x
[
¬P (x) ∨

((
∀y[¬P (y) ∨ P (f(x, y))]

)
∧
(
∃z[Q(x, z) ∨ ¬P (z)]

))]

CSC384 | University of Toronto 17
















































Skolemization

Skolemization: Remove existential quantifiers by introducing new function symbols.

∀x
[
¬P (x) ∨

((
∀y[¬P (y) ∨ P (f(x, y))]

)
∧
(
∃z[Q(x, z) ∨ ¬P (z)]

))]

CSC384 | University of Toronto 18



Skolemization
• Consider ∃y(elephant(y) ∧ friendly(y))

• This asserts that there is some individual (binding for y) that is both an elephant andfriendly.

• To remove the existential, we invent a "name" for this individual aaa.This "name" must be a new constant symbol (not equal to any previous constant sym-bols in the vocabulary of the KB):
elephant(aaa) ∧ friendly(aaa)

CSC384 | University of Toronto 19



Skolemization
• Consider ∃y(elephant(y) ∧ friendly(y))

• This asserts that there is some individual (binding for y) that is both an elephant andfriendly.
• To remove the existential, we invent a "name" for this individual aaa.This "name" must be a new constant symbol (not equal to any previous constant sym-bols in the vocabulary of the KB):

elephant(aaa) ∧ friendly(aaa)

• The new sentence says the same thing, since we do not know anything about aaa.
• IMPORTANT: The introduced symbol aaa must be new.Else we might know something else about aaa in KB.

– If we did know something else about aaa we would be asserting more than theexistential.
– In original quantified formula we know nothing about the variable y. Just whatwas being asserted by the existential formula.

CSC384 | University of Toronto 19












Skolemization
• Now consider

∀x∃y(loves(x, y))

This formula states that for every x there is some y that x loves (possibly a di�erent
y for each x).

• Replacing the existential by a new constant won’t work

∀x(loves(x,aaa))

This asserts that there is a particular individual aaa loved by every x.

CSC384 | University of Toronto 20



Skolemization
• Now consider

∀x∃y(loves(x, y))

This formula states that for every x there is some y that x loves (possibly a di�erent
y for each x).

• Replacing the existential by a new constant won’t work

∀x(loves(x,aaa))

This asserts that there is a particular individual aaa loved by every x.
• To properly convert existential quantifiers scoped by universal quantifiers we mustuse functions:

– Use a new function symbol that mentions every universally quantified variablethat scopes the existential.
∀x(loves(x, g(x))

where g is a new function symbol.This formula asserts that for every x there is some individual (denoted by g(x))that x loves.

CSC384 | University of Toronto 20



Skolemization: Examples
∀x∀y∀z∃w(R(x, y, z, w))

∀x∀y∃w(R(x, y, w))

∀x∀y∃w∀z(R(x, y, w) ∧Q(z, w))

CSC384 | University of Toronto 21




















































































































































































































































































Skolemization

Skolemization: Remove existential quantifiers by introducing new function symbols.

∀x
[
¬P (x) ∨

((
∀y[¬P (y) ∨ P (f(x, y))]

)
∧
(
∃z[Q(x, z) ∨ ¬P (z)]

))]

∀x
[
¬P (x) ∨

((
∀y[¬P (y) ∨ P (f(x, y))]

)
∧
(
Q(x, g(x)) ∨ ¬P (g(x))

))]

CSC384 | University of Toronto 22



Convert to Prenex Form
Convert to Prenex Form: Bring all quantifiers to the front.We use the following equivalences, where x does not occur free in Q

• ∀xP ∧Q i� Q ∧ ∀xP i� ∀x(P ∧Q)

• ∀xP ∨Q i� Q ∨ ∀xP i� ∀x(P ∨Q)

∀x
[
¬P (x) ∨

((
∀y[¬P (y) ∨ P (f(x, y))]

)
∧
(
Q(x, g(x)) ∨ ¬P (g(x))

))]

∀x∀y
[
¬P (x) ∨

((
¬P (y) ∨ P (f(x, y))

)
∧
(
Q(x, g(x)) ∨ ¬P (g(x))

))]

CSC384 | University of Toronto 23



Distribute Conjunctions over Disjunctions

Conjunctions over Disjunctions: A ∨ (B ∧ C) i� (A ∨B) ∧ (A ∨ C)

∀x∀y
[
¬P (x)∨

((
¬P (y) ∨ P (f(x, y))

)
∧
(
Q(x, g(x)) ∨ ¬P (g(x))

))]

∀x∀y
[(

¬P (x)∨
(
¬P (y) ∨ P (f(x, y))

))
∧
(
¬P (x)∨

(
Q(x, g(x)) ∨ ¬P (g(x))

))]

CSC384 | University of Toronto 24





























































































Flatten nested Conjunctions and Disjunctions
Flatten nested ∧ and ∨:

• A ∨ (B ∨ C) to (A ∨B ∨ C)

• A ∧ (B ∧ C) to (A ∧B ∧ C)

∀x∀y
[(

¬P (x) ∨
(
¬P (y) ∨ P (f(x, y))

))
∧
(
¬P (x) ∨

(
Q(x, g(x)) ∨ ¬P (g(x))

))]

∀x∀y
[(

¬P (x) ∨ ¬P (y) ∨ P (f(x, y))
)
∧
(
¬P (x) ∨Q(x, g(x)) ∨ ¬P (g(x))

)]

CSC384 | University of Toronto 25



Convert to Clauses
Convert to Clauses: Remove universal quantifiers and break apart conjunctions

∀x∀y
[(

¬P (x) ∨ ¬P (y) ∨ P (f(x, y))
)
∧
(
¬P (x) ∨Q(x, g(x)) ∨ ¬P (g(x))

)]

• ¬P (x) ∨ ¬P (y) ∨ P (f(x, y))

• ¬P (x) ∨Q(x, g(x)) ∨ ¬P (g(x))

CSC384 | University of Toronto 26



Unification
• If clauses have no variables syntactic identity can be used to detect if a P and ¬Pexists.
• What about variables? Can the following clauses be resolved?

(P (johnjohnjohn), Q(fredfredfred), R(x))

(¬P (y), R(susansusansusan), R(y))

– Once reduced to clausal form, all remaining variables are universally quantified.So, implicitly (¬P (y), R(susansusansusan), R(y)) represents a whole set of clauses like
(¬P (fredfredfred), R(susansusansusan), R(fredfredfred))

(¬P (johnjohnjohn), R(susansusansusan), R(johnjohnjohn))...
– So there is a specialization of this clause that can be resolved with

(P (johnjohnjohn), Q(fredfredfred), R(x))

– In particular
(P (johnjohnjohn), Q(fredfredfred), R(johnjohnjohn)) and (¬P (johnjohnjohn), R(susansusansusan), R(johnjohnjohn))can can be resolved, producing
(Q(fredfredfred), R(johnjohnjohn), R(susansusansusan))

CSC384 | University of Toronto 27














































































Unification
• We want to be able to match conflicting literals, even when they have variables.
• The matching process automatically determines whether or not there is a specializa-tion that matches.
• But, We don’t want to over specialize!

- (¬P (x), S(x), Q(fredfredfred))- (P (y), R(y))

Possible resolvants:

• The last resolvant is most-general, the other two are specializations of it.We want to keep the most general clause so that we can use it future resolution steps.

CSC384 | University of Toronto 28




















































































































































































































































































































































































Substitution
• Unification is a mechanism for finding the most general matching.
• A key component of unification is substitution.A substitution is a finite set of equations of the form V = t where V is a variable and
t is a term not containing V (t might contain other variables).

• We can apply a substitution δ = {V1 = t1, ..., Vn = tn} to a formula A to obtain a newformula Aδ by simultaneously replacing every variable Vi by term ti.
Example: Applying δ = {x = y, y = f(a)} to P (x, g(y, z))

Note that the substitutions are NOT applied sequentially, i.e., the first y is not subse-quently replaced by f(a).

CSC384 | University of Toronto 29












































































































Composition of Substitutions
• We can compose two substitutions θ and δ to obtain a new substitution θδ.
• Composition is a way of converting the sequential application of a series of substitu-tions to a single simultaneous substitution.
θ = {x1 = s1, x2 = s2, ..., xm = sm}
δ = {y1 = t1, y2 = t2, ..., yk = tk}To compute θδ:

1. Apply δ to each RHS of θ and then add all of the equations of δ:
θδ = {x1 = s1δ, x2 = s2δ, ..., xm = smδ, y1 = t1, y2 = t2, ..., yk = tk}

2. Delete any identities, i.e., equations of the form V = V from θδ.
3. Delete any equation yi = si where yi is equal to one of the xj in θ.

Example: θ = {x = f(y), y = z}, δ = {x = a, y = b, z = y}

CSC384 | University of Toronto 30

























































































































































































































































.

CSC384 | University of Toronto 31































































Composition of Substitutions

• The empty substitution ε = {} is also a substitution, and it acts as an identity undercomposition.

• Substitutions when applied to formulas are associative:
(fθ)δ = f(θδ)

CSC384 | University of Toronto 32

































Unifiers

A unifier of two formulas f and g is a substitution δ that makes f and g syntactically identical.
Not all formulas can be unified since substitutions only a�ect variables.

Example:

P (f(x), aaa) P (y, f(w))

This pair cannot be unified as there is no way of making aaa = f(w) with a substitution.

CSC384 | University of Toronto 33



Most General Unifier (MGU)
A substitution δ of two formulas f and g is a Most General Unifier (MGU) if:

1. δ is a unifier.
2. For every other unifier θ of f and g there exist a third substitution λ such that

θ = δλ

That is, every other unifier is more specialized than δ.The MGU of a pair of formulas f and g is unique up to renaming.

The MGU is the “least specialized” way of making clauses with universal variables match.

CSC384 | University of Toronto 34



MGU: Example
P (f(x), z) P (y,aaa)

δ = {y = f(aaa), x = aaa, z = aaa} is a unifier. But it is not an MGU.

P (f(x), z)δ =

P (y,aaa)δ =

θ = {y = f(x), z = aaa} is an MGU.

P (f(x), z)θ =

P (y,aaa)θ =

δ = θλ, where λ = {x = aaa}

CSC384 | University of Toronto 35







































































































































Computing MGUs: Intuition

• We line up the two formulas and find the first sub-expression where they disagree.

• The pair of sub-expressions where they first disagree is called the disagreement set.

• The algorithm works by successively fixing disagreement sets until the two formulasbecome syntactically identical.

CSC384 | University of Toronto 36






Most General Unifier
To find the MGU of two formulas f and g.

1. k = 0; δ0 = {}; S0 = {f, g}.
2. REPEAT UNTIL no more disagreement:
3. Find disagreement set Dk = {e1, e2}.
4. IF e1 = V , where V is a variable,and e2 = t, where t is a term not containing V ,or vice-versa then:

• δk+1 = δk{V = t} # Compose the additional substitution
• Sk+1 = Sk{V = t} # Apply the additional substitution
• k = k + 1

5. ELSE unification is not possible.

CSC384 | University of Toronto 37



MGU - Example 1

Find the MGU of P (f(aaa), g(x)) and P (y, y):

δ0 = {};S0 = {P (f(aaa), g(x)) , P (y,y)}

D0 = {f(aaa), y}
δ1 = {y = f(aaa)};S1 = {P (f(aaa),g(x)) , P (f(aaa),f(aaa))}
D1 = {g(x), f(aaa)}
no unification possible!



MGU - Example 1

Find the MGU of P (f(aaa), g(x)) and P (y, y):

δ0 = {};S0 = {P (f(aaa), g(x)) , P (y,y)}
D0 = {f(aaa), y}

δ1 = {y = f(aaa)};S1 = {P (f(aaa),g(x)) , P (f(aaa),f(aaa))}
D1 = {g(x), f(aaa)}
no unification possible!



MGU - Example 1

Find the MGU of P (f(aaa), g(x)) and P (y, y):

δ0 = {};S0 = {P (f(aaa), g(x)) , P (y,y)}
D0 = {f(aaa), y}
δ1 = {y = f(aaa)};S1 = {P (f(aaa),g(x)) , P (f(aaa),f(aaa))}

D1 = {g(x), f(aaa)}
no unification possible!



MGU - Example 1

Find the MGU of P (f(aaa), g(x)) and P (y, y):

δ0 = {};S0 = {P (f(aaa), g(x)) , P (y,y)}
D0 = {f(aaa), y}
δ1 = {y = f(aaa)};S1 = {P (f(aaa),g(x)) , P (f(aaa),f(aaa))}
D1 = {g(x), f(aaa)}

no unification possible!



MGU - Example 1

Find the MGU of P (f(aaa), g(x)) and P (y, y):

δ0 = {};S0 = {P (f(aaa), g(x)) , P (y,y)}
D0 = {f(aaa), y}
δ1 = {y = f(aaa)};S1 = {P (f(aaa),g(x)) , P (f(aaa),f(aaa))}
D1 = {g(x), f(aaa)}
no unification possible!



MGU - Example 2

δ0 = {}; S0 = {P (aaa, x, h(g(z))) , P (z, h(y), h(y))}

D0 = {aaa, z}
δ1 = {z = aaa}; S1 = {P (aaa,x, h(g(aaa))) , P (aaa,h(y), h(y))}
D1 = {x, h(y)}
δ2 = {z = aaa,x = h(y)};
S2 = {P (aaa,h(y), h(g(aaa))) ; P (aaa, h(y), h(y))}
D2 = {g(aaa), y}
δ3 = {z = aaa, x = h(y)}{y = g(aaa)}

= {z = aaa, x = h(g(aaa)), y = g(aaa)}
S3 = {P (aaa, h(g(aaa)), h(g(aaa))) ; P (aaa, h(g(aaa)), h(g(aaa)))}
No disagreement
⇒ δ = {z = aaa, x = h(g(aaa)), y = g(aaa)} is MGU



MGU - Example 2

δ0 = {}; S0 = {P (aaa, x, h(g(z))) , P (z, h(y), h(y))}
D0 = {aaa, z}

δ1 = {z = aaa}; S1 = {P (aaa,x, h(g(aaa))) , P (aaa,h(y), h(y))}
D1 = {x, h(y)}
δ2 = {z = aaa,x = h(y)};
S2 = {P (aaa,h(y), h(g(aaa))) ; P (aaa, h(y), h(y))}
D2 = {g(aaa), y}
δ3 = {z = aaa, x = h(y)}{y = g(aaa)}

= {z = aaa, x = h(g(aaa)), y = g(aaa)}
S3 = {P (aaa, h(g(aaa)), h(g(aaa))) ; P (aaa, h(g(aaa)), h(g(aaa)))}
No disagreement
⇒ δ = {z = aaa, x = h(g(aaa)), y = g(aaa)} is MGU



MGU - Example 2

δ0 = {}; S0 = {P (aaa, x, h(g(z))) , P (z, h(y), h(y))}
D0 = {aaa, z}
δ1 = {z = aaa}; S1 = {P (aaa,x, h(g(aaa))) , P (aaa,h(y), h(y))}

D1 = {x, h(y)}
δ2 = {z = aaa,x = h(y)};
S2 = {P (aaa,h(y), h(g(aaa))) ; P (aaa, h(y), h(y))}
D2 = {g(aaa), y}
δ3 = {z = aaa, x = h(y)}{y = g(aaa)}

= {z = aaa, x = h(g(aaa)), y = g(aaa)}
S3 = {P (aaa, h(g(aaa)), h(g(aaa))) ; P (aaa, h(g(aaa)), h(g(aaa)))}
No disagreement
⇒ δ = {z = aaa, x = h(g(aaa)), y = g(aaa)} is MGU



MGU - Example 2

δ0 = {}; S0 = {P (aaa, x, h(g(z))) , P (z, h(y), h(y))}
D0 = {aaa, z}
δ1 = {z = aaa}; S1 = {P (aaa,x, h(g(aaa))) , P (aaa,h(y), h(y))}
D1 = {x, h(y)}

δ2 = {z = aaa,x = h(y)};
S2 = {P (aaa,h(y), h(g(aaa))) ; P (aaa, h(y), h(y))}
D2 = {g(aaa), y}
δ3 = {z = aaa, x = h(y)}{y = g(aaa)}

= {z = aaa, x = h(g(aaa)), y = g(aaa)}
S3 = {P (aaa, h(g(aaa)), h(g(aaa))) ; P (aaa, h(g(aaa)), h(g(aaa)))}
No disagreement
⇒ δ = {z = aaa, x = h(g(aaa)), y = g(aaa)} is MGU



MGU - Example 2

δ0 = {}; S0 = {P (aaa, x, h(g(z))) , P (z, h(y), h(y))}
D0 = {aaa, z}
δ1 = {z = aaa}; S1 = {P (aaa,x, h(g(aaa))) , P (aaa,h(y), h(y))}
D1 = {x, h(y)}
δ2 = {z = aaa,x = h(y)};
S2 = {P (aaa,h(y), h(g(aaa))) ; P (aaa, h(y), h(y))}

D2 = {g(aaa), y}
δ3 = {z = aaa, x = h(y)}{y = g(aaa)}

= {z = aaa, x = h(g(aaa)), y = g(aaa)}
S3 = {P (aaa, h(g(aaa)), h(g(aaa))) ; P (aaa, h(g(aaa)), h(g(aaa)))}
No disagreement
⇒ δ = {z = aaa, x = h(g(aaa)), y = g(aaa)} is MGU



MGU - Example 2

δ0 = {}; S0 = {P (aaa, x, h(g(z))) , P (z, h(y), h(y))}
D0 = {aaa, z}
δ1 = {z = aaa}; S1 = {P (aaa,x, h(g(aaa))) , P (aaa,h(y), h(y))}
D1 = {x, h(y)}
δ2 = {z = aaa,x = h(y)};
S2 = {P (aaa,h(y), h(g(aaa))) ; P (aaa, h(y), h(y))}
D2 = {g(aaa), y}

δ3 = {z = aaa, x = h(y)}{y = g(aaa)}
= {z = aaa, x = h(g(aaa)), y = g(aaa)}

S3 = {P (aaa, h(g(aaa)), h(g(aaa))) ; P (aaa, h(g(aaa)), h(g(aaa)))}
No disagreement
⇒ δ = {z = aaa, x = h(g(aaa)), y = g(aaa)} is MGU



MGU - Example 2

δ0 = {}; S0 = {P (aaa, x, h(g(z))) , P (z, h(y), h(y))}
D0 = {aaa, z}
δ1 = {z = aaa}; S1 = {P (aaa,x, h(g(aaa))) , P (aaa,h(y), h(y))}
D1 = {x, h(y)}
δ2 = {z = aaa,x = h(y)};
S2 = {P (aaa,h(y), h(g(aaa))) ; P (aaa, h(y), h(y))}
D2 = {g(aaa), y}
δ3 = {z = aaa, x = h(y)}{y = g(aaa)}

= {z = aaa, x = h(g(aaa)), y = g(aaa)}
S3 = {P (aaa, h(g(aaa)), h(g(aaa))) ; P (aaa, h(g(aaa)), h(g(aaa)))}

No disagreement
⇒ δ = {z = aaa, x = h(g(aaa)), y = g(aaa)} is MGU



MGU - Example 2

δ0 = {}; S0 = {P (aaa, x, h(g(z))) , P (z, h(y), h(y))}
D0 = {aaa, z}
δ1 = {z = aaa}; S1 = {P (aaa,x, h(g(aaa))) , P (aaa,h(y), h(y))}
D1 = {x, h(y)}
δ2 = {z = aaa,x = h(y)};
S2 = {P (aaa,h(y), h(g(aaa))) ; P (aaa, h(y), h(y))}
D2 = {g(aaa), y}
δ3 = {z = aaa, x = h(y)}{y = g(aaa)}

= {z = aaa, x = h(g(aaa)), y = g(aaa)}
S3 = {P (aaa, h(g(aaa)), h(g(aaa))) ; P (aaa, h(g(aaa)), h(g(aaa)))}
No disagreement
⇒ δ = {z = aaa, x = h(g(aaa)), y = g(aaa)} is MGU



MGU - Example 3

S0 = {P (x,x) , P (y, f(y))}

D0 = {x, y}
δ1 = {x = y}, S1 = {P (y,y) , P (y,f(y))}
D1 = {y, f(y)}
no unification possible!



MGU - Example 3

S0 = {P (x,x) , P (y, f(y))}
D0 = {x, y}

δ1 = {x = y}, S1 = {P (y,y) , P (y,f(y))}
D1 = {y, f(y)}
no unification possible!



MGU - Example 3

S0 = {P (x,x) , P (y, f(y))}
D0 = {x, y}
δ1 = {x = y}, S1 = {P (y,y) , P (y,f(y))}

D1 = {y, f(y)}
no unification possible!



MGU - Example 3

S0 = {P (x,x) , P (y, f(y))}
D0 = {x, y}
δ1 = {x = y}, S1 = {P (y,y) , P (y,f(y))}
D1 = {y, f(y)}

no unification possible!



MGU - Example 3

S0 = {P (x,x) , P (y, f(y))}
D0 = {x, y}
δ1 = {x = y}, S1 = {P (y,y) , P (y,f(y))}
D1 = {y, f(y)}
no unification possible!



Resolution of Clauses with Variables

Consider two clauses:
(L,Q1, Q2, ..., Qk)

(¬M,R1, R2, ..., Rn)where there exists an MGU δ for L and M .

We apply δ to both clauses, resolve Lδ and ¬Mδ, and infer the new clause
(Q1δ,Q2δ, ..., Qkδ,R1δ, R2δ, ..., Rnδ)

CSC384 | University of Toronto 38




































Resolution of Clauses with Variables: Example
(P (x), Q(g(x)))

(R(aaa), Q(z),¬P (aaa))

L = P (x),M = P (aaa)

δ = {x = aaa}

R[1a, 2c]{x = aaa}(Q(g(aaa)), R(aaa), Q(z))

CSC384 | University of Toronto 39






































































































Resolution of Clauses with Variables: Example
(P (x), Q(g(x)))

(R(aaa), Q(z),¬P (aaa))

L = P (x),M = P (aaa)

δ = {x = aaa}

R[1a, 2c]{x = aaa}(Q(g(aaa)), R(aaa), Q(z))

The notation is important. You will need to use this notation on the exam!
• R: resolution step.
• 1a: the first (a-th) literal in the first clause; i.e. P (x).
• 2c: the third (c-th) literal in the second clause; i.e., ¬P (aaa).

– 1a and 2c are the clashing literals.
• {x = a}: the substitution applied to make the clashing literals identical.

CSC384 | University of Toronto 39






Resolution Proof: Example

Some patients like all doctors.No patient likes any quack.
Prove: No doctor is a quack.

Step 1: Pick a vocabulary for representing these assertions.

CSC384 | University of Toronto 40



Resolution Proof: Example

Some patients like all doctors.No patient likes any quack.
Prove: No doctor is a quack.
Step 1: Pick a vocabulary for representing these assertions.

P (x): x is a patient.
D(x): x is a doctor.
Q(x): x is a quack.
L(x, y): x likes y.

CSC384 | University of Toronto 40



Resolution Proof: Example

Some patients like all doctors.No patient likes any quack.
Prove: No doctor is a quack.

Step 2: Convert each assertion to a first-order formula.

CSC384 | University of Toronto 41



Resolution Proof: Example

Some patients like all doctors.No patient likes any quack.
Prove: No doctor is a quack.
Step 2: Convert each assertion to a first-order formula.

F1 : ∃x[P (x) ∧ ∀y[D(y) → L(x, y))]]

CSC384 | University of Toronto 41



Resolution Proof: Example

Some patients like all doctors.No patient likes any quack.
Prove: No doctor is a quack.
Step 2: Convert each assertion to a first-order formula.
F1 : ∃x[P (x) ∧ ∀y[D(y) → L(x, y))]]

F2 : ∀x∀y[(P (x) ∧Q(y)) → ¬L(x, y)]

CSC384 | University of Toronto 41



Resolution Proof: Example

Some patients like all doctors.No patient likes any quack.
Prove: No doctor is a quack.
Step 2: Convert each assertion to a first-order formula.
F1 : ∃x[P (x) ∧ ∀y[D(y) → L(x, y))]]

F2 : ∀x∀y[(P (x) ∧Q(y)) → ¬L(x, y)]

Query: ∀x[D(x) → ¬Q(x)]

CSC384 | University of Toronto 41



Resolution Proof: Example
Step 3: Convert to Clausal form.
F1 : ∃x[P (x) ∧ ∀y[D(y) → L(x, y))]]

CSC384 | University of Toronto 42





























































































































































































































































































































































































Resolution Proof: Example
F2 : ∀x∀y[(P (x) ∧Q(y)) → ¬L(x, y)]

Negation of Query:
¬(∀x[D(x) → ¬Q(x)])

CSC384 | University of Toronto 43





























































































































































































































































































































































































































































































Resolution Proof: Example
Step 4: Resolution Proof from the Clauses.

1. P (aaa)

2. (¬D(y), L(aaa, y))

3. (¬P (x),¬Q(y),¬L(x, y))

4. D(bbb)

5. Q(bbb)

CSC384 | University of Toronto 44



Resolution Proof: Example
Step 4: Resolution Proof from the Clauses.

1. P (aaa)

2. (¬D(y), L(aaa, y))

3. (¬P (x),¬Q(y),¬L(x, y))

4. D(bbb)

5. Q(bbb)

6. R[3b, 5]{y = bbb} (¬P (x),¬L(x,bbb))

CSC384 | University of Toronto 44



Resolution Proof: Example
Step 4: Resolution Proof from the Clauses.

1. P (aaa)

2. (¬D(y), L(aaa, y))

3. (¬P (x),¬Q(y),¬L(x, y))

4. D(bbb)

5. Q(bbb)

6. R[3b, 5]{y = bbb} (¬P (x),¬L(x,bbb))

7. R[6a, 1]{x = aaa} ¬L(a, ba, ba, b)

CSC384 | University of Toronto 44



Resolution Proof: Example
Step 4: Resolution Proof from the Clauses.

1. P (aaa)

2. (¬D(y), L(aaa, y))

3. (¬P (x),¬Q(y),¬L(x, y))

4. D(bbb)

5. Q(bbb)

6. R[3b, 5]{y = bbb} (¬P (x),¬L(x,bbb))

7. R[6a, 1]{x = aaa} ¬L(a, ba, ba, b)

8. R[7, 2b]{y = bbb} ¬D(bbb)

CSC384 | University of Toronto 44



Resolution Proof: Example
Step 4: Resolution Proof from the Clauses.

1. P (aaa)

2. (¬D(y), L(aaa, y))

3. (¬P (x),¬Q(y),¬L(x, y))

4. D(bbb)

5. Q(bbb)

6. R[3b, 5]{y = bbb} (¬P (x),¬L(x,bbb))

7. R[6a, 1]{x = aaa} ¬L(a, ba, ba, b)

8. R[7, 2b]{y = bbb} ¬D(bbb)

9. R[8, 4] ()

CSC384 | University of Toronto 44



Answer Extraction
• The previous example shows how we can answer Yes-No questions.
• With a bit more e�ort we can also answer “fill-in-the-blanks” questions:

– Use free variables in the query where we want the fill in the blanks.
– Keep track of the binding that these variables received in proving the query.
parent(art, jonart, jonart, jon) – is art one of jon’s parents?
parent(x,jonjonjon) - who is one of jon’s parents?

– A simple bookkeeping device is to use a predicate symbol answer(x, y, ...) tokeep track of the bindings automatically.
Example: To answer parent(x,jonjonjon), construct the clause:

(¬parent(x,jonjonjon), answer(x))

Then perform resolution until obtain a clause consisting of only answer literals(previously we stopped at empty clauses).

CSC384 | University of Toronto 45
































































































Answer Extraction: Example 1

1. father(art, jonart, jonart, jon)

2. father(bob, kimbob, kimbob, kim)

3. (¬father(y, z), parent(y, z)) (all fathers are parents)

4. (¬parent(x,jonjonjon), answer(x)) (who is parent of jon?)

CSC384 | University of Toronto 46



Answer Extraction: Example 1
1. father(art, jonart, jonart, jon)

2. father(bob, kimbob, kimbob, kim)

3. (¬father(y, z), parent(y, z)) (all fathers are parents)
4. (¬parent(x,jonjonjon), answer(x)) (who is parent of jon?)

5. R[4, 3b] {y = x, z = jonjonjon} (¬father(x,jonjonjon), answer(x))

6. R[5, 1] {x = artartart} answer(artartart)

CSC384 | University of Toronto 46


















Answer Extraction: Exercise
Answer the following query (Sentence 4) using the information provided by Sentences 1-3.

1. Either bob or art is father of jon.

2. bob is father of kim.

3. All fathers are parents.

4. Who is parent of jon?

CSC384 | University of Toronto 47



Answer Extraction: Example 2

Answer the following query (Sentence 4) using the information provided by Sentences 1-3.
1. Whoever can read is literate.
2. Dolphins are not literate.
3. Flipper is an intelligent dolphin.
4. Who is intelligent but cannot read?

CSC384 | University of Toronto 48



Answer Extraction: Example 2
Whoever can read is literate. ∀x[read(x) → lit(x)]

Dolphins are not literate. ∀x[dolp(x) → ¬lit(x)]

Flipper is an intelligent dolphin. dolp(flipflipflip) ∧ intell(flipflipflip)

Who is intelligent but cannot read?

CSC384 | University of Toronto 49



Answer Extraction: Example 2
Whoever can read is literate. ∀x[read(x) → lit(x)]

Dolphins are not literate. ∀x[dolp(x) → ¬lit(x)]

Flipper is an intelligent dolphin. dolp(flipflipflip) ∧ intell(flipflipflip)

Who is intelligent but cannot read?
Whoever that is intelligent but cannot read is the answer

CSC384 | University of Toronto 49



Answer Extraction: Example 2
Whoever can read is literate. ∀x[read(x) → lit(x)]

Dolphins are not literate. ∀x[dolp(x) → ¬lit(x)]

Flipper is an intelligent dolphin. dolp(flipflipflip) ∧ intell(flipflipflip)

Who is intelligent but cannot read?
Whoever that is intelligent but cannot read is the answer
∀x[(intell(x) ∧ ¬read(x)) → answer(x)]

CSC384 | University of Toronto 49



Answer Extraction: Example 2
1. (¬read(x), lit(x))

2. (¬dolp(x),¬lit(x))

3. dolp(flipflipflip)

4. intell(flipflipflip)

5. (¬intell(x), read(x), answer(x))

CSC384 | University of Toronto 50



Answer Extraction: Example 2
1. (¬read(x), lit(x))

2. (¬dolp(x),¬lit(x))

3. dolp(flipflipflip)

4. intell(flipflipflip)

5. (¬intell(x), read(x), answer(x))

6. R[5a, 4] {x = flipflipflip} (read(flipflipflip), answer(flipflipflip))

7. R[6, 1a] {x = flipflipflip} (lit(flipflipflip), answer(flipflipflip))

8. R[7, 2b] {x = flipflipflip} (¬dolp(flipflipflip), answer(flipflipflip))

9. R[8, 3] answer(flipflipflip)

CSC384 | University of Toronto 50


