CSC384
 Knowledge Representation Part 2

Bahar Aameri \& Sonya Allin

Summer 2020

We gratefully acknowledge those who have contributed to these slides, most recently Bahar Aameri, who merged and augmented slides from Yongmei Liu and a CSC384 slide deck historically developed by Craig Boutilier, Fahiem Bacchus, Sheila McIlraith, Sonya Allin, Hojjat Ghaderi, and others. We also acknowledge the use of material written by Michael Winter, and the use of material originating from slides and the book by Ron Brachman and Hector Levesque.

Let Φ be a set of sentences and A be a sentence.
A is a logical consequence of Φ (denoted by $\Phi \models A$) if for every structure \mathcal{M}, if $\mathcal{M} \models \Phi$ then $\mathcal{M} \models A$.

If A is a logical consequence of Φ, then there is no \mathcal{M} such that $\mathcal{M} \models \Phi \cup\{\neg A\}$. In other words, $\Phi \cup\{\neg A\}$ is unsatisfiable.

Example:

Assume Φ includes the following sentences:
$\forall x \forall y \forall z[(\operatorname{above}(z, y) \wedge \operatorname{above}(y, x)) \rightarrow \operatorname{above}(z, x)]$
$\operatorname{above}\left(\boldsymbol{c}_{1}, \boldsymbol{c}_{2}\right) \wedge \operatorname{above}\left(\boldsymbol{c}_{2}, \boldsymbol{c}_{3}\right)$

$$
\Phi \not \equiv \text { above }\left(c_{1}, c_{3}\right)
$$

Knowledge-based Systems

Knowledge Base (KB): A collection of sentences that represents what the agent/program believes about the world.

Sentences in the KB are explicit knowledge of the agent.
Logical consequences of the KB are implicit knowledge of the agent.

Example: Suppose KB includes the following sentences:

- The capital of Canada is Ottawa
- The largest province in Canada is Quebec
- The provinces neighbouring Quebec are Ontario, New Brunswick, and Newfoundland

Implicit knowledge of the KB:

Ontario, New Brunswick and Newfoundland are the neighbouring provinces of the largest province in Canada.

- To compute implicit knowledge of the KB (i.e., logical consequences) we need a mechanical procedure that can be implemented as an algorithm.
- This would allow us to reason with our knowledge:
- Represent the knowledge as logical formulas.
- Apply the procedure for generating logical consequences
- Mechanical proof procedures work by manipulating formulas. They do not know or care anything about interpretations. Nevertheless they respect the semantics of interpretations!

A proof procedure is sound if whenever it produces a sentence A by manipulating sentences in a KB , then A is a logical consequence of KB (i.e., $K B \models A$).
That is, all conclusions arrived at via the proof procedure are correct: they are logical consequences.

A proof procedure is complete if it can produce all logical consequences of $K B$.
That is, if $K B \models A$, then the procedure can produce A.

We will develop a sound and complete proof procedure for first-order logic called Resolution.

Resolution works with formulas expressed in clausal form.

A literal is an atomic formula or the negation of an atomic formula.
Example: $\operatorname{dog}($ fido $), \neg c a t($ fido $), P(x), \neg Q(y)$

A clause is a disjunction of literals:
Example:
$P(x) \vee \neg Q(x, y)$
\dashv owns $($ fido, $\boldsymbol{f r e d}) \vee \neg \operatorname{dog}($ fido $) \vee \operatorname{person}($ fred $)$

A clausal theory is a conjunction of clauses.
Example:
$(P(x) \vee \neg Q(x, y)) \wedge$
$(\neg$ owns $($ fido, fred $) \vee \neg \operatorname{dog}($ fido $) \vee$ person $($ fred $))$

Resolution

The resolution proof procedure uses only one inference rule:

$Q(x, y) \vee R(y)$

$(Q(x, y) \vee P(\boldsymbol{a}))$ and $\neg P(\boldsymbol{a})$

$\xrightarrow[(\text { and }]{P(\boldsymbol{a})} \text { aP(a)}$
We denote a contradiction by an empty clause: ()

Resolution by Refutation

$K B F A$

Resolution by Refutation:

- Assume $\neg A$ is true to generate a contradiction. (Refutation)
- Convert $\neg A$ and all sentences in KB to a clausal theory C.
- Resolve the clauses in C until an empty clause is obtained.

Resolution by Refutation: Example
Want to prov \oint likes(clyde, peanuts) from:

1. elephant $($ clyde $) \vee$ giraffe (clyde)
2. $\operatorname{\text {elephant}}$ (clyde) \vee likes(clyde, peanuts)
$K B$
3. \neg giraffe(clyde) \vee likes(clyde, leaves)
4. $\neg l i k e s(c l y d e, l e a v e s) ~$

Assume: 5. \neg likes(clyde, peanuts)
Resolution Tree

Resolution by Refutation: Example
Want to prove likes(clyde,peanuts) from:

1. elephant $($ clyde $) \vee$ giraffe $($ clyde $)$
2. $\neg e l e p h a n t($ clyde $) \vee$ likes(clyde, peanuts)
3. \neg giraf fe(clyde) \vee likes(clyde,leaves)
4. \neg likes(clyde,leaves)

Resolution by Refutation Proof:

- \neg likes(clyde, peanuts)[5.]
- 5\&2: ᄀelephant(clyde)[6.]
- 6\&1: giraffe(clyde)[7.]
- 7\&3: likes(clyde,leaves)[8.]
- 8\&4: ()

To develop a complete resolution proof procedure for first-order logic we need :

1. A way of converting KB and A into clausal form.
2. A way of doing resolution even when we have variables (unification).
3. Eliminate Implications.
4. Move Negations Inwards (and simplify $\neg \neg$).
5. Sțandardize Variables.
6. Skolemization.
7. Convert to Prenex Form.
8. Distribute Conjunctions over Disjunctions.
9. Flatten nested Conjunctions and Disjunctions.
10. Convert to Clauses.

Eliminate Implications

Implication Rule: $\quad A \rightarrow B \quad$ iff $\quad \neg A \vee B$
$\forall x[\underline{P(x)} \stackrel{\downarrow}{\boldsymbol{\Downarrow}}((\forall y[P(y) \rightarrow P(f(x, y))]) \wedge \neg(\forall y[\neg q(x, y) \wedge P(y)]))]$

Eliminate Implication: $\forall x[\neg P(x) \vee((\forall y[\neg P(y) \vee P(f(x, y))]) \wedge \neg(\forall y[\neg q(x, y) \wedge P(y)]))]$

- $\neg \neg A$ iff A
- $\neg(A \wedge B) \quad$ iff $\quad \neg A \vee \neg B$
- $\neg(A \vee B) \quad$ iff $\quad \neg A \wedge \neg B$
- $\neg \forall x A$ iff $\exists x \neg A$
- $\neg \exists x A$ iff $\quad \forall x \neg A$

Simplify and Move Negations Inwards

$\forall x[\neg P(x) \vee((\forall y[\neg P(y) \vee P(f(x, y))]) \wedge \neg(\forall y[\neg Q(x, y) \wedge P(y)]))]$

Move Negations Inwards:
$\forall x[\neg P(x) \vee((\forall y[\neg P(y) \vee P(f(x, y))]) \wedge(\exists y[\neg \neg Q(x, y) \vee \neg P(y)]))]$

Simplify Negations:

$\forall x[\neg P(x) \vee((\forall y[\neg P(y) \vee P(f(x, y))]) \wedge(\exists y[Q(x, y) \vee \neg P(y)]))]$

Standardize Variables

Standardize Variables: Rename variables so that each quantified variable is unique.

Skolemization

Skolemization: Remove existential quantifiers by introducing new function symbols.
$\forall x[\neg P(x) \vee((\forall y[\neg P(y) \vee P(f(x, y))]) \wedge(\exists z[Q(x, z) \vee \neg P(z)]))]$

- Consider $\exists y($ elephant $(y) \wedge$ friendly $(y))$
- This asserts that there is some individual (binding for y) that is both an elephant and friendly.
- To remove the existential, we invent a "name" for this individual a. This "name" must be a new constant symbol (not equal to any previous constant symbols in the vocabulary of the KB):

$$
\operatorname{elephant}(\boldsymbol{a}) \wedge \text { friendly }(\boldsymbol{a})
$$

- This asserts that there is some individual (binding for y) that is both an elephant and friendly.
- To remove the existential, we invent a "name" for this individual a.

This "name" must be a new constant symbol (not equal to any previous constant symbols in the vocabulary of the KB):
elephant $(\boldsymbol{a}) \wedge$ friendly (\boldsymbol{a})

- The new sentence says the same thing, since we do not know anything about \boldsymbol{a}.
- IMPORTANT: The introduced symbol a must be new.

Else we might know something else about \boldsymbol{a} in KB.

- If we did know something else about \boldsymbol{a} we would be asserting more than the existential.
- In original quantified formula we know nothing about the variable y. Just what was being asserted by the existential formula.
- Now consider

$$
\forall x \exists y(\operatorname{loves}(x, y))
$$

This formula states that for every x there is some y that x loves (possibly a different y for each x).

- Replacing the existential by a new constant won't work

$$
\forall x(\operatorname{loves}(x, \boldsymbol{a}))
$$

This asserts that there is a particular individual \boldsymbol{a} loved by every x.

Skolemization

- Now Consider

$$
\forall x \exists y(\operatorname{loves}(x, y))
$$

This formula states that for every x there is some y that x loves (possibly a different y for each x).

- Replacing the existential by a new constant won't work

$$
\forall x(\text { loves }(x, \boldsymbol{a}))
$$

This asserts that there is a particular individual \boldsymbol{a} loved by every x.

- To properly convert existential quantifiers scoped by universal quantifiers we must use functions:
- Use a new function symbol that mentions every universally quantified variable that scopes the existential.

$$
\forall x(\operatorname{loves}(x, g(x))
$$

where g is a new function symbol.
This formula asserts that for every x there is some individual (denoted by $g(x)$) that x loves.
$\forall x \forall y \forall z \exists w(R(x, y, z, w))$

$$
\forall x \forall y \forall z\left(R\left(x, y, z, g_{1}(x, y, z)\right)\right)
$$

$\forall x \forall y \exists w(R(x, y, w))$

$$
\forall x \forall y\left(R\left(x, y, g_{2}(x, y)\right)\right)
$$

$\forall x \forall y \exists w \forall z(R(x, y, w) \wedge Q(z, w))$

$$
\forall x \forall \gamma \forall z\left(R\left(x, y, g_{3}(x, y)\right) \wedge Q\left(z, g_{3}(x, y)\right)\right)
$$

Skolemization

Skolemization: Remove existential quantifiers by introducing new function symbols.

$$
\begin{aligned}
& \forall x[\neg P(x) \vee((\forall y[\neg P(y) \vee P(f(x, y))]) \wedge(\exists z[Q(x, z) \vee \neg P(z)]))] \\
& \forall x[\neg P(x) \vee((\forall y[\neg P(y) \vee P(f(x, y))]) \wedge(Q(x, g(x)) \vee \neg P(g(x))))]
\end{aligned}
$$

Convert to Prenex Form: Bring all quantifiers to the front.
We use the following equivalences, where x does not occur free in Q

- $\forall x P \wedge Q \quad$ iff $\quad Q \wedge \forall x P \quad$ iff $\quad \forall x(P \wedge Q)$
- $\forall x P \vee Q \quad$ iff $\quad Q \vee \forall x P \quad$ iff $\quad \forall x(P \vee Q)$
$\forall x[\neg P(x) \vee((\forall y[\neg P(y) \vee P(f(x, y))]) \wedge(Q(x, g(x)) \vee \neg P(g(x))))]$
$\forall x \forall y[\neg P(x) \vee((\neg P(y) \vee P(f(x, y))) \wedge(Q(x, g(x)) \vee \neg P(g(x))))]$

Distribute Conjunctions over Disjunctions

Conjunctions over Disjunctions: $\quad A \vee(B \wedge C) \quad$ iff $\quad(A \vee B) \wedge(A \vee C)$

Flatten nested Conjunctions and Disjunctions

Flatten nested \wedge and \vee :

- $A \vee(B \vee C)$ to $(A \vee B \vee C)$
- $A \wedge(B \wedge C)$ to $\quad(A \wedge B \wedge C)$
$\forall x \forall y[(\neg P(x) \vee(\neg P(y) \vee P(f(x, y)))) \wedge(\neg P(x) \vee(Q(x, g(x)) \vee \neg P(g(x))))]$
$\forall x \forall y[(\neg P(x) \vee \neg P(y) \vee P(f(x, y))) \wedge(\neg P(x) \vee Q(x, g(x)) \vee \neg P(g(x)))]$

Convert to Clauses: Remove universal quantifiers and break apart conjunctions

$$
\forall x \forall y[(\neg P(x) \vee \neg P(y) \vee P(f(x, y))) \wedge(\neg P(x) \vee Q(x, g(x)) \vee \neg P(g(x)))]
$$

- $\neg P(x) \vee \neg P(y) \vee P(f(x, y))$
- $\neg P(x) \vee Q(x, g(x)) \vee \neg P(g(x))$
- If clauses have no variables syntactic identity can be used to detect if a P and $\neg P$ exists.
- What about variables? Can the following clauses be resolved?
$\rightarrow(P($ john $), Q($ fred $), R(x))$
$\longrightarrow \underset{\uparrow}{\underset{\sim}{\neg P(y)}, R(\text { susan }), R(y))} \mathbb{R}$
- Once reduced to clausal form, all remaining variables are universally quantified. So, implicitly $\neg P(\mathscr{y}), R($ susan $), R(\underline{y}))]$ represents a whole set of clauses like
$\left[\begin{array}{l}(\neg P(\text { fred }), R(\text { susan }), R(\text { fred })) \\ (\neg P(\overline{\text { john }}), R(\text { susan }), R(\text { john }))\end{array}\right.$ $(\neg P(\overline{\text { john }}), R($ susan $), R(\boldsymbol{j o h n}))$
- So there is a specialization of this clause that can be resolved with ($P($ john $), Q($ fred $), R(x))$
- In particular
$(\rho(\boldsymbol{j o h n})) Q($ fred $), R(\boldsymbol{j o h n}))$ and $\left(\zeta_{P(\boldsymbol{j o h} \boldsymbol{n})}, R(\right.$ susan $\left.), R(\boldsymbol{j o h n})\right)$ can can be resolved, producing ($Q($ fred $), R($ john $), R($ susan $))$

Unification

- We want to be able to match conflicting literals, even when they have variables.
- The matching process automatically determines whether or not there is a specializaton that matches.
- But, We don't want to over specialize!
- $(\neg P(x), S(x), Q($ fred $))$
- $(P(y), R(y))$

$$
\begin{aligned}
& \text { Possible resolvents: } \\
& \text { 1- }(S(\text { josoln }), Q(\text { fred }), R(\text { john }))\left\{y=x, x=j_{0} h_{n}\right\} \\
& 2-\left(S(\text { sail } \gamma), Q\left(f_{\text {red }}\right), R(\text { sql })\right)\{y=x, x=\text { Sail } \gamma\} \\
& 3-(\underline{S(x)}, Q(\text { fred }), R(x))\{y=x\}
\end{aligned}
$$

- The last resolvent is most-general, the other two are specializations of it. We want to keep the most general clause so that we can use it future resolution steps.
- Unification is a mechanism for finding the most general matching.
- A key component of unification is substitution.

A substitution is a finite set of equations of the form $V=t$ where V is a variable and t is a term not containing V (t might contain other variables).

- We can apply a substitution $\delta=\left\{V_{1}=t_{1}, \ldots, V_{n}=t_{n}\right\}$ to a formula A to obtain a new formula $A \delta$ by simultaneously replacing every variable V_{i} by term t_{i}.

Example: Applying $\delta=\{x=y, y=f(a)\}$ to $P(x, g(y, z))$

$$
P(x, g(y, z)) \delta=P(y, g(f(a), z))
$$

Note that the substitutions are NOT applied sequentially, i.e., the first y is not subsequently replaced by $f(a)$.

Composition of Substitutions

- We can compose two substitutions θ and δ to obtain a new substitution $\theta \delta$.
- Composition is a way of converting the sequential application of a series of substitutons to a single simultaneous substitution.

$$
\begin{aligned}
& \theta=\left\{x_{1}=s_{1}, x_{2}=s_{2}, \ldots, x_{m}=s_{m}\right\} \\
& \delta=\left\{y_{1}=t_{1}, y_{2}=t_{2}, \ldots, y_{k}=t_{k}\right\}
\end{aligned}
$$

To compute $\theta \delta$:

$$
\begin{aligned}
& A \theta \rightarrow B \\
& B 8 \rightarrow C \\
& A \theta 8 \rightarrow C
\end{aligned}
$$

1. Apply δ to each RHS of θ and then add all of the equations of δ :

$$
\theta \delta=\left\{x_{1}=s_{1} \delta, x_{2}=s_{2} \delta, \ldots, x_{m}=s_{m} \delta, y_{1}=t_{1}, y_{2}=t_{2}, \ldots, y_{k}=t_{k}\right\}
$$

2. Delete any identities, i.e., equations of the form $V=V$ from $\theta \delta$.
3. Delete any equation $y_{i}=s_{i}$ where y_{i} is equal to one of the x_{j} in θ.

Example: $\theta=\{x=f(y), y=z\}, \delta=\{\overline{x=a}, y=b, z=y\}$

$$
\theta \delta=\left\{x=f(b), \frac{y=y}{x}, \frac{x=a}{x}, \frac{\gamma=b}{x}, z=-j\right\}
$$

$$
\theta \delta=\{x=f(b), z=z\}
$$

Composition of Substitutions

- The empty substitution $\epsilon=\{ \}$ is also a substitution, and it acts as an identity under composition.
- Substitutions when applied to formulas are associative:

$\theta \delta \neq 8 \theta$

$$
(f \theta) \delta=f(\theta \delta)
$$

Unifiers

A unifier of two formulas f and g is a substitution δ that makes f and g syntactically identical.

Not all formulas can be unified since substitutions only affect variables.

Example:

$$
P(f(x), \boldsymbol{a}) \quad P(y, f(w))
$$

This pair cannot be unified as there is no way of making $\boldsymbol{a}=f(w)$ with a substitution.

Most General Unifier (MGU)

A substitution δ of two formulas f and g is a Most General Unifier (MGU) if:

1. δ is a unifier.
2. For every other unifier θ of f and g there exist a third substitution λ such that

$$
\theta=\delta \lambda
$$

That is, every other unifier is more specialized than δ.
The MGU of a pair of formulas f and g is unique up to renaming.

The MGU is the "least specialized" way of making clauses with universal variables match.

MGU: Example

$$
P(f(x), z) \quad P(y, \boldsymbol{a})
$$

$\delta=\{y=f(\boldsymbol{a}), x=\boldsymbol{a}, z=\boldsymbol{a}\}$ is a unifier. But it is not an MGU.

$$
\begin{aligned}
& P(f(x), z) \delta=P(f(a), a) \\
& P(y, a) \delta=P(f(a), a)
\end{aligned}
$$

$\theta=\{y=f(x), z=\boldsymbol{a}\}$ is an MGU.

$$
\begin{aligned}
& P(f(x), z) \theta=P(f(x), a) \\
& P(y, a) \theta=P(f(x), a)
\end{aligned}
$$

$\delta=\theta \lambda$, where $\lambda=\{x=\boldsymbol{a}\}$

Computing MGUs: Intuition

- We line up the two formulas and find the first sub-expression where they disagree.
- The pair of sub-expressions where they first disagree is called the disagreement set.
- The algorithm works by successively fixing disagreement sets until the two formulas become syntactically identical.

To find the MGU of two formulas f and g.

1. $k=0 ; \quad \delta_{0}=\{ \} ; \quad S_{0}=\{f, g\}$.
2. REPEAT UNTIL no more disagreement:
3. Find disagreement set $D_{k}=\left\{e_{1}, e_{2}\right\}$.
4. IF $e_{1}=V$, where V is a variable, and $e_{2}=t$, where t is a term not containing V, or vice-versa then:

- $\delta_{k+1}=\delta_{k}\{V=t\}$ \# Compose the additional substitution
- $S_{k+1}=S_{k}\{V=t\}$ \# Apply the additional substitution
- $k=k+1$

5. ELSE unification is not possible.

MGU - Example 1

Find the MGU of $P(f(\boldsymbol{a}), g(x))$ and $P(y, y)$:

- $\delta_{0}=\{ \} ; S_{0}=\{P(f(\boldsymbol{a}), g(x)), P(y, y)\}$

MGU - Example 1

Find the MGU of $P(f(\boldsymbol{a}), g(x))$ and $P(y, y)$:

- $\delta_{0}=\{ \} ; S_{0}=\{P(f(\boldsymbol{a}), g(x)), P(y, y)\}$
- $D_{0}=\{f(\boldsymbol{a}), y\}$

MGU - Example 1

Find the MGU of $P(f(\boldsymbol{a}), g(x))$ and $P(y, y)$:

- $\delta_{0}=\{ \} ; S_{0}=\{P(f(\boldsymbol{a}), g(x)), P(y, y)\}$
- $D_{0}=\{f(\boldsymbol{a}), y\}$
- $\delta_{1}=\{y=f(\boldsymbol{a})\} ; S_{1}=\{P(f(\boldsymbol{a}), g(x)), P(f(\boldsymbol{a}), f(\boldsymbol{a}))\}$

MGU - Example 1

Find the MGU of $P(f(\boldsymbol{a}), g(x))$ and $P(y, y)$:

- $\delta_{0}=\{ \} ; S_{0}=\{P(f(\boldsymbol{a}), g(x)), P(y, y)\}$
- $D_{0}=\{f(\boldsymbol{a}), y\}$
- $\delta_{1}=\{y=f(\boldsymbol{a})\} ; S_{1}=\{P(f(\boldsymbol{a}), g(x)), P(f(\boldsymbol{a}), f(\boldsymbol{a}))\}$
- $D_{1}=\{g(x), f(\boldsymbol{a})\}$

MGU - Example 1

Find the MGU of $P(f(\boldsymbol{a}), g(x))$ and $P(y, y)$:

- $\delta_{0}=\{ \} ; S_{0}=\{P(f(\boldsymbol{a}), g(x)), P(y, y)\}$
- $D_{0}=\{f(\boldsymbol{a}), y\}$
- $\delta_{1}=\{y=f(\boldsymbol{a})\} ; S_{1}=\{P(f(\boldsymbol{a}), g(x)), P(f(\boldsymbol{a}), f(\boldsymbol{a}))\}$
- $D_{1}=\{g(x), f(\boldsymbol{a})\}$
- no unification possible!

MGU - Example 2

$$
\text { - } \delta_{0}=\{ \} ; \quad S_{0}=\{P(\boldsymbol{a}, x, h(g(z))), P(z, h(y), h(y))\}
$$

MGU - Example 2

- $\delta_{0}=\{ \} ; \quad S_{0}=\{P(a, x, h(g(z))), P(z, h(y), h(y))\}$
- $D_{0}=\{\boldsymbol{a}, z\}$

MGU - Example 2

- $\delta_{0}=\{ \} ; \quad S_{0}=\{P(\boldsymbol{a}, x, h(g(z))), P(z, h(y), h(y))\}$
- $D_{0}=\{\boldsymbol{a}, z\}$
- $\delta_{1}=\{z=\boldsymbol{a}\} ; \quad S_{1}=\{P(\boldsymbol{a}, x, h(g(\boldsymbol{a}))), P(\boldsymbol{a}, h(y), h(y))\}$

MGU - Example 2

- $\delta_{0}=\{ \} ; \quad S_{0}=\{P(\boldsymbol{a}, x, h(g(z))), P(z, h(y), h(y))\}$
- $D_{0}=\{\boldsymbol{a}, z\}$
- $\delta_{1}=\{z=\boldsymbol{a}\} ; \quad S_{1}=\{P(\boldsymbol{a}, x, h(g(\boldsymbol{a}))), P(\boldsymbol{a}, h(y), h(y))\}$
- $D_{1}=\{x, h(y)\}$

MGU - Example 2

- $\delta_{0}=\{ \} ; \quad S_{0}=\{P(\boldsymbol{a}, x, h(g(z))), P(z, h(y), h(y))\}$
- $D_{0}=\{\boldsymbol{a}, z\}$
- $\delta_{1}=\{z=\boldsymbol{a}\} ; \quad S_{1}=\{P(\boldsymbol{a}, x, h(g(\boldsymbol{a}))), P(\boldsymbol{a}, h(y), h(y))\}$
- $D_{1}=\{x, h(y)\}$
- $\delta_{2}=\{z=\boldsymbol{a}, x=h(y)\} ;$
$S_{2}=\{P(\boldsymbol{a}, h(y), h(g(\boldsymbol{a}))) ; P(\boldsymbol{a}, h(y), h(y))\}$

MGU - Example 2

- $\delta_{0}=\{ \} ; \quad S_{0}=\{P(\boldsymbol{a}, x, h(g(z))), P(z, h(y), h(y))\}$
- $D_{0}=\{\boldsymbol{a}, z\}$
- $\delta_{1}=\{z=\boldsymbol{a}\} ; \quad S_{1}=\{P(\boldsymbol{a}, x, h(g(\boldsymbol{a}))), P(\boldsymbol{a}, h(y), h(y))\}$
- $D_{1}=\{x, h(y)\}$
- $\delta_{2}=\{z=\boldsymbol{a}, x=h(y)\} ;$
$S_{2}=\{P(\boldsymbol{a}, h(y), h(g(\boldsymbol{a}))) ; P(\boldsymbol{a}, h(y), h(y))\}$
- $D_{2}=\{g(\boldsymbol{a}), y\}$

MGU - Example 2

- $\delta_{0}=\{ \} ; \quad S_{0}=\{P(\boldsymbol{a}, x, h(g(z))), P(z, h(y), h(y))\}$
- $D_{0}=\{\boldsymbol{a}, z\}$
- $\delta_{1}=\{z=\boldsymbol{a}\} ; \quad S_{1}=\{P(\boldsymbol{a}, x, h(g(\boldsymbol{a}))), P(\boldsymbol{a}, h(y), h(y))\}$
- $D_{1}=\{x, h(y)\}$
- $\delta_{2}=\{z=\boldsymbol{a}, x=h(y)\} ;$

$$
S_{2}=\{P(\boldsymbol{a}, h(y), h(g(\boldsymbol{a}))) ; P(\boldsymbol{a}, h(y), h(y))\}
$$

- $D_{2}=\{g(\boldsymbol{a}), y\}$
- $\delta_{3}=\{z=\boldsymbol{a}, x=h(y)\}\{y=g(\boldsymbol{a})\}$

$$
=\{z=\boldsymbol{a}, x=h(g(\boldsymbol{a})), y=g(\boldsymbol{a})\}
$$

$$
S_{3}=\{P(\boldsymbol{a}, h(g(\boldsymbol{a})), h(g(\boldsymbol{a}))) ; P(\boldsymbol{a}, h(g(\boldsymbol{a})), h(g(\boldsymbol{a})))\}
$$

MGU - Example 2

- $\delta_{0}=\{ \} ; \quad S_{0}=\{P(\boldsymbol{a}, x, h(g(z))), P(z, h(y), h(y))\}$
- $D_{0}=\{\boldsymbol{a}, z\}$
- $\delta_{1}=\{z=\boldsymbol{a}\} ; \quad S_{1}=\{P(\boldsymbol{a}, x, h(g(\boldsymbol{a}))), P(\boldsymbol{a}, h(y), h(y))\}$
- $D_{1}=\{x, h(y)\}$
- $\delta_{2}=\{z=\boldsymbol{a}, x=h(y)\} ;$
$S_{2}=\{P(\boldsymbol{a}, h(y), h(g(\boldsymbol{a}))) ; P(\boldsymbol{a}, h(y), h(y))\}$
- $D_{2}=\{g(\boldsymbol{a}), y\}$
- $\delta_{3}=\{z=\boldsymbol{a}, x=h(y)\}\{y=g(\boldsymbol{a})\}$

$$
=\{z=\boldsymbol{a}, x=h(g(\boldsymbol{a})), y=g(\boldsymbol{a})\}
$$

$S_{3}=\{P(\boldsymbol{a}, h(g(\boldsymbol{a})), h(g(\boldsymbol{a}))) ; P(\boldsymbol{a}, h(g(\boldsymbol{a})), h(g(\boldsymbol{a})))\}$

- No disagreement
$\Rightarrow \delta=\{z=\boldsymbol{a}, x=h(g(\boldsymbol{a})), y=g(\boldsymbol{a})\}$ is MGU

MGU - Example 3

- $S_{0}=\{P(x, x), P(y, f(y))\}$

MGU - Example 3

- $S_{0}=\{P(x, x), P(y, f(y))\}$
- $D_{0}=\{x, y\}$

MGU - Example 3

- $S_{0}=\{P(x, x), P(y, f(y))\}$
- $D_{0}=\{x, y\}$
- $\delta_{1}=\{x=y\}, S_{1}=\{P(y, y), P(y, f(y))\}$

MGU - Example 3

- $S_{0}=\{P(x, x), P(y, f(y))\}$
- $D_{0}=\{x, y\}$
- $\delta_{1}=\{x=y\}, S_{1}=\{P(y, y), P(y, f(y))\}$
- $D_{1}=\{y, f(y)\}$

MGU - Example 3

- $S_{0}=\{P(x, x), P(y, f(y))\}$
- $D_{0}=\{x, y\}$
- $\delta_{1}=\{x=y\}, S_{1}=\{P(y, y), P(y, f(y))\}$
- $D_{1}=\{y, f(y)\}$
- no unification possible!

Consider two clauses:
$\left(L, Q_{1}, Q_{2}, \ldots, Q_{k}\right)$
$\left(\neg M, R_{1}, R_{2}, \ldots, R_{n}\right)$
where there exists an MGU δ for L and M.

$L \delta=M \delta$

 L8 7MWe apply δ to both clauses, resolve $L \delta$ and $\neg M \delta$, and infer the new clause $\left(Q_{1} \delta, Q_{2} \delta, \ldots, Q_{k} \delta, R_{1} \delta, R_{2} \delta, \ldots, R_{n} \delta\right)$

$$
\begin{aligned}
& \begin{array}{l}
(P(x), Q(g(x))) \\
(R(a), Q(z), \neg P(a)) \\
L=P(x), M=P(a) \\
\delta=\{x=\boldsymbol{a}\}
\end{array} \\
& \begin{array}{l}
R[1 a, 2 c]\{x=\boldsymbol{a}\}(Q(g(a)), R(a), Q(z))
\end{array}
\end{aligned}
$$

```
\((P(x), Q(g(x)))\)
\((R(\boldsymbol{a}), Q(z), \neg P(\boldsymbol{a}))\)
\(L=P(x), M=P(\boldsymbol{a})\)
\(\delta=\{x=\boldsymbol{a}\}\)
\(R[1 a, 2 c]\{x=\boldsymbol{a}\}(Q(g(\boldsymbol{a})), R(\boldsymbol{a}), Q(z))\)
```

The notation is important. You will need to use this notation on the exam!

- R: resolution step.
- 1a: the first (a-th) literal in the first clause; i.e. $P(x)$.
- 2c: the third (c-th) literal in the second clause; i.e., $\neg P(\boldsymbol{a})$.
- 1 a and 2 c are the clashing literals.
- $\{x=a\}$: the substitution applied to make the clashing literals identical.

Some patients like all doctors.
No patient likes any quack.
Prove: No doctor is a quack.

Step 1: Pick a vocabulary for representing these assertions.

Resolution Proof: Example

Some patients like all doctors.
No patient likes any quack.
Prove: No doctor is a quack.
Step 1: Pick a vocabulary for representing these assertions.

$$
\begin{aligned}
& P(x): x \text { is a patient. } \\
& D(x): x \text { is a doctor. } \\
& Q(x): x \text { is a quack. } \\
& L(x, y): x \text { likes } y .
\end{aligned}
$$

Some patients like all doctors.
No patient likes any quack.
Prove: No doctor is a quack.

Step 2: Convert each assertion to a first-order formula.

Resolution Proof: Example

Some patients like all doctors.
No patient likes any quack.
Prove: No doctor is a quack.
Step 2: Convert each assertion to a first-order formula.

$$
\left.F_{1}: \exists x[P(x) \wedge \forall y[D(y) \rightarrow L(x, y))]\right]
$$

Resolution Proof: Example

Some patients like all doctors.
No patient likes any quack.
Prove: No doctor is a quack.
Step 2: Convert each assertion to a first-order formula.
$\left.F_{1}: \exists x[P(x) \wedge \forall y[D(y) \rightarrow L(x, y))]\right]$
$F_{2}: \forall x \forall y[(P(x) \wedge Q(y)) \rightarrow \neg L(x, y)]$

Resolution Proof: Example

Some patients like all doctors.
No patient likes any quack.
Prove: No doctor is a quack.
Step 2: Convert each assertion to a first-order formula.

$$
\begin{aligned}
& \left.F_{1}: \exists x[P(x) \wedge \forall y[D(y) \rightarrow L(x, y))]\right] \\
& F_{2}: \forall x \forall y[(P(x) \wedge Q(y)) \rightarrow \neg L(x, y)]
\end{aligned}
$$

Query: $\forall x[D(x) \rightarrow \neg Q(x)]$

Step 3: Convert to Clausal form.

$$
\begin{aligned}
& \left.F_{1}: \exists x[P(x) \wedge \forall y[D(y) \xrightarrow{ } L(x, y))]\right] \\
& \exists x[P(x) \wedge \forall y[\underline{T}(y) \underline{L}(x, y)]] \\
& P(a) \wedge \forall y[7 D(y) \vee L(a, y)] \text { Ascomemization } \\
& \forall y[\underbrace{P(a)}_{\text {(1) }} \wedge(\underbrace{7 D(y) \vee L(a, \gamma)}_{\text {(2) }}) \\
& \text { 1. } P(a) \\
& \text { 2.7D(j) } \vee L(a ; j)
\end{aligned}
$$

$$
\begin{aligned}
& \left.F_{2}: \forall v \forall v(P(x) \wedge Q(y)) \geq L(x, y)\right] \\
& \forall x \forall J[\mathcal{I}(P(x) \wedge Q(y)) \vee \neg L(x, y)] \\
& \forall x \forall \gamma[(\neg P(x) \vee \neg Q(y)) \vee \neg L(x, y)] \\
& \text { (3) } \neg P(x) \vee \neg Q(y) \vee \neg L(x, y)
\end{aligned}
$$

Negation of Query:

$$
\begin{aligned}
& \exists x \uparrow[\neg D(x) \vee \neg Q(x)] \\
& \exists x[D(x) \wedge Q(x)]
\end{aligned}
$$

(4) $D(b) \wedge Q(b),{ }^{\text {\# }}$ \#kolemization

Resolution Proof: Example

Step 4: Resolution Proof from the Clauses.

1. $P(\boldsymbol{a})$
2. $(\neg D(y), L(\boldsymbol{a}, y))$
3. $(\neg P(x), \neg Q(y), \neg L(x, y))$
4. $D(b)$
5. $Q(b)$

Resolution Proof: Example

Step 4: Resolution Proof from the Clauses.

1. $P(\boldsymbol{a})$
2. $(\neg D(y), L(\boldsymbol{a}, y))$
3. $(\neg P(x), \neg Q(y), \neg L(x, y))$
4. $D(\boldsymbol{b})$
5. $Q(b)$
6. $R[3 b, 5]\{y=\boldsymbol{b}\} \quad(\neg P(x), \neg L(x, \boldsymbol{b}))$

Resolution Proof: Example

Step 4: Resolution Proof from the Clauses.

1. $P(\boldsymbol{a})$
2. $(\neg D(y), L(\boldsymbol{a}, y))$
3. $(\neg P(x), \neg Q(y), \neg L(x, y))$
4. $D(b)$
5. $Q(\boldsymbol{b})$
6. $R[3 b, 5]\{y=\boldsymbol{b}\} \quad(\neg P(x), \neg L(x, \boldsymbol{b}))$
7. $R[6 a, 1]\{x=\boldsymbol{a}\} \quad \neg L(\boldsymbol{a}, \boldsymbol{b})$

Resolution Proof: Example

Step 4: Resolution Proof from the Clauses.

1. $P(\boldsymbol{a})$
2. $(\neg D(y), L(\boldsymbol{a}, y))$
3. $(\neg P(x), \neg Q(y), \neg L(x, y))$
4. $D(\boldsymbol{b})$
5. $Q(\boldsymbol{b})$
6. $R[3 b, 5]\{y=\boldsymbol{b}\} \quad(\neg P(x), \neg L(x, \boldsymbol{b}))$
7. $R[6 a, 1]\{x=\boldsymbol{a}\} \quad \neg L(\boldsymbol{a}, \boldsymbol{b})$
8. $R[7,2 b]\{y=\boldsymbol{b}\} \quad \neg D(\boldsymbol{b})$

Resolution Proof: Example

Step 4: Resolution Proof from the Clauses.

1. $P(\boldsymbol{a})$
2. $(\neg D(y), L(\boldsymbol{a}, y))$
3. $(\neg P(x), \neg Q(y), \neg L(x, y))$
4. $D(\boldsymbol{b})$
5. $Q(\boldsymbol{b})$
6. $R[3 b, 5]\{y=\boldsymbol{b}\} \quad(\neg P(x), \neg L(x, \boldsymbol{b}))$
7. $R[6 a, 1]\{x=\boldsymbol{a}\} \quad \neg L(\boldsymbol{a}, \boldsymbol{b})$
8. $R[7,2 b]\{y=\boldsymbol{b}\} \quad \neg D(\boldsymbol{b})$
9. $R[8,4]()$

Answer Extraction

- The previous example shows how we can answer Yes-No questions.
- With a bit more effort we can also answer "fill-in-the-blanks" questions:
- Use free variables in the query where we want the fill in the blanks.
- Keep track of the binding that these variables received in proving the query. parent(art, jon) - is art one of jon's parents? parent $(x$, jon $)$ - who is one of jon's parents?
- A simple bookkeeping device is to use a predicate symbol answer (x, y, \ldots) to keep track of the bindings automatically.
Example: To answer parent (x, jon), construct the clause:

$$
(\neg \operatorname{parent}(x, \text { jon }), \operatorname{answer}(x))
$$

Then perform resolution until obtain a clause consisting of only answer literals (previously we stopped at empty clauses).

$$
\forall x[\operatorname{Parent}(x, \text { Jon }) \rightarrow \operatorname{answer}(x)]
$$

Answer Extraction: Example 1

1. father (art, jon)
2. father(bob, kim)
3. (\neg father $(y, z), \operatorname{parent}(y, z))$ (all fathers are parents)
4. (\neg parent $(x, \boldsymbol{j} \boldsymbol{j o n})$, answer $(x))$ (who is parent of jon?)
5. father(art,jon)
6. father(bob, kim)
7. (\neg father (y, z), parent (y, z)) (all fathers are parents)
8. ($\neg \operatorname{parent}(x$, jon $)$, answer $(x))$ (who is parent of jon?)

9. $R[5,1]\{x=\boldsymbol{a r t}\} \quad$ answer $(\boldsymbol{a r t})$

Answer the following query (Sentence 4) using the information provided by Sentences 1-3.

1. Either bob or art is father of jon.
2. bob is father of kim.
3. All fathers are parents.
4. Who is parent of jon?

Answer Extraction: Example 2

Answer the following query (Sentence 4) using the information provided by Sentences 1-3.

1. Whoever can read is literate.
2. Dolphins are not literate.
3. Flipper is an intelligent dolphin.
4. Who is intelligent but cannot read?

Answer Extraction: Example 2

Whoever can read is literate. $\quad \forall x[\operatorname{read}(x) \rightarrow \operatorname{lit}(x)]$

Dolphins are not literate.
$\forall x[\operatorname{dolp}(x) \rightarrow \neg \operatorname{lit}(x)]$

Flipper is an intelligent dolphin. $\quad \operatorname{dolp}(\operatorname{flip}) \wedge \operatorname{intell}(f l i p)$

Who is intelligent but cannot read?

Whoever can read is literate. $\quad \forall x[\operatorname{read}(x) \rightarrow \operatorname{lit}(x)]$

Dolphins are not literate.

$$
\forall x[\operatorname{dolp}(x) \rightarrow \neg \operatorname{lit}(x)]
$$

Flipper is an intelligent dolphin. $\quad \operatorname{dolp}(\boldsymbol{f l i p}) \wedge \operatorname{intell}($ flip $)$

Who is intelligent but cannot read?

Whoever that is intelligent but cannot read is the answer

Answer Extraction: Example 2

Whoever can read is literate.

$$
\forall x[\operatorname{read}(x) \rightarrow \operatorname{lit}(x)]
$$

Dolphins are not literate.

$$
\forall x[\operatorname{dolp}(x) \rightarrow \neg \operatorname{lit}(x)]
$$

Flipper is an intelligent dolphin. $\quad \operatorname{dolp}(\boldsymbol{f l i p}) \wedge \operatorname{intell}(\boldsymbol{f l i p})$

Who is intelligent but cannot read?

Whoever that is intelligent but cannot read is the answer
$\forall x[(\operatorname{intell}(x) \wedge \neg \operatorname{read}(x)) \rightarrow \operatorname{answer}(x)]$

Answer Extraction: Example 2

1. $(\neg \operatorname{read}(x), \operatorname{lit}(x))$
2. $(\neg \operatorname{dolp}(x), \neg \operatorname{lit}(x))$
3. $\operatorname{dolp}(\boldsymbol{f l i p})$
4. intell(flip)
5. $(\neg \operatorname{intell}(x), \operatorname{read}(x), \operatorname{answer}(x))$

Answer Extraction: Example 2

1. $(\neg \operatorname{read}(x), \operatorname{lit}(x))$
2. $(\neg \operatorname{dolp}(x), \neg l i t(x))$
3. $\operatorname{dolp}(\boldsymbol{f l i p})$
4. intell(flip)
5. $(\neg \operatorname{intell}(x), \operatorname{read}(x), \operatorname{answer}(x))$
6. $R[5 a, 4]\{x=$ flip $\} \quad($ read $(\boldsymbol{f l i p})$, answer $(\boldsymbol{f l i p}))$
7. $R[6,1 a]\{x=$ flip $\} \quad(\operatorname{lit}(\boldsymbol{f l i p})$, answer $(\boldsymbol{f l i p}))$
8. $R[7,2 b]\{x=$ flip $\} \quad(\neg \operatorname{dolp}($ flip $)$, answer $($ flip $))$
9. $R[8,3]$ answer(flip)
