
Heuristic Search
• Reading note: Chapter 4 in R&N covers heuristic 

search.
• 2nd Edition of R&N is (temporarily) available at: https://

catalog.hathitrust.org/Record/004917484? type%5B%
5D=all&lookfor%5B%5D=Artificial% 20Intelligence%3A
%20A%20Modern% 20Approach%20&ft=ft

• Also https://artint.info/2e/html/ArtInt2e.Ch3.S6.html
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Heuristic functions
We can encode each notion of the “ merit” of a 
state into a heuristic function, h(n).

Heuristics are sensitive to the problem domain.

Heuristic for planning a path through a maze?

For solving a Rubick’s cube?
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Heuristic Search
• If h(n1) < h(n2) this means that we guess that it
is cheaper to get to the goal from n1 than

from n2.

• We require that
– h(n) = 0 for every node n whose terminal state
satisfies the goal.

– Zero cost of achieving the goal from node that
already satisfies the goal.

Euclidean distance as h(s)

Say we want to plan a path from Arad to Bucharest, and we know the straight 
line distance from each city to our goal.  This lets us plan our trip by picking 

cities at each time point that minimize the distance to our goal (or maximize our 
heuristic). 
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Best first (greedy) search

If we only use h(n) to guide our search, the search strategy is called Greedy 
or Best First Search 

How can it possibly go wrong??
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Best first (greedy) search

In red is the path we selected.  In green is the shortest path between 

Arad and Bucharest. What happened?
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Modifying the search
How to avoid the mistake?
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Modifying the search
How to avoid the mistake?

Take into account the cost of getting to the node as well as our estimate of the cost of 
getting to the goal from the node.

Define an evaluation function f(n):

f(n) = g(n) + h(n)

g(n) is the cost of the path to node n
h(n) is the heuristic estimate of the cost of achieving the goal from n. 

Always expand the node with lowest f-value on Frontier.

The f-value, f(n) is an estimate of the cost of getting to the goal via the node (path) n. 
I.e., we first follow the path n then we try to get to the goal. f(n) estimates the total
cost of such a solution.
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What will A* do here?
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What will happen here??
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Terminate only after we 

have REMOVED the 

goal from the Frontier.
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What happens when we visit 
nodes twice?
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What happens when we visit 
nodes twice?

If A* discovers a lower cost path through a state as it is searching, it should 
update the order of that state on the Frontier, based on the lower path cost. 
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Is A* Guaranteed Optimal?
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Properties of A* depend on 
conditions on h(n)

• To achieve completeness, optimality, and
desirably time and space complexity with A*
search, we must put some conditions on the
heuristic function h(n) and the search space.
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Condition on h(n): Admissible

• Assume each transition due to an action a has cost ≥ ε > 0.
• Let h*(n) be the cost of an optimal path from n to a goal node

( if there is no path). Then an admissible heuristic satisfies the
condition:

h(n) ≤  h*(n)

an admissible heuristic never over-estimates the cost to reach the 
goal, i.e., it is optimistic

• Hence h(g) = 0, for any goal node g
• Also h*(n) = if there is no path from n to a goal node

Problem!

Search animations: Pac Man
https://www.youtube.com/watch?v=2XjzjAfGWzY
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Back to admissibility
Which heuristics are admissible for the 8 puzzle?
• h(n) = number of misplaced tiles
• h(n) = total Manhattan distance between tile locations in S and goal

locations in G
• h(n) = min (2, h*[n])
• h(n) = h*(n)
• h(n) = max (2, h*[n])
• h(n) = 0
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Record your answers at https://forms.gle/n7aWKFT4TSy6vDtJ9 



Admissible heuristics
Say for the 8-puzzle: 

h1(n) = number of misplaced tiles 
h2(n) = total Manhattan distance 
(i.e., no. of squares from desired location of each tile) 

• h1(S) = ? 8
• h2(S) = ? 3+1+2+2+2+3+3+2 = 18

Which heuristic might be preferable, and why?

How to build a heuristic?

A useful technique is to simplify a problem when building 
heuristics, and to let h(n) be the cost of reaching the goal in the 
easier problem. 
For example, in the 8-Puzzle you can only move a tile from 
square A to B if A is adjacent (left, right, above, below) to B and 
B is blank
We can relax some of these conditions and:

1. allow a move from A to B if A is adjacent to B (i.e. we
can ignore whether or not position is blank),

2. allow a move from A to B if B is blank (i.e. we can
ignore adjacency),

3. allow all moves from A to B (ignore both conditions).

How to build a heuristic?
• #3 leads to the misplaced tiles heuristic.

– To solve the puzzle, we need to move each tile into its final
position.

– Number of moves = number of misplaced tiles.
– Clearly h(n) = number of misplaced tiles ≤ the h*(n) the cost

of an optimal sequence of moves from n.
• #1 leads to the Manhattan distance heuristic.

– To solve the puzzle we need to slide each tile into its final
position.

– We can move vertically or horizontally.
– Number of moves = sum over all of the tiles of the number

of vertical and horizontal slides we need to move that tile
into place.

– Again h(n) = sum of the Manhattan distances ≤ h*(n)
• in a real solution we need to move each tile at least that

that far and we can only move one tile at a time.

Admissible heuristics make for optimal search
Why? 



Admissible heuristics make for optimal search
Why? 

• Say we have an optimal path to ngoal with cost g(ngoal).
• Let n’goal be a sub-optimal path, meaning g(n’goal) > g(ngoal).
• Let n” be any sub-path of the optimal path on the Frontier.

Is it possible for the path to n’goal  to be explored before the path to ngoal?

• No! Because f(ngoal) < f(n’goal)• Also f(n’’) <= f(ngoal), because our heuristic is admissible.
• So, f(n’’) < f(n’goal)

Meaning sub-paths on the optimal path to ngoal will be explored before 

any sub-optimal path to the goal! 

• A* expands nodes, or paths, in order of increasing f value
• Gradually  adds "f-contours"
• Each contour contains all paths with f=fi, where fi < fi+1

Admissible heuristics make for optimal search

Weighted A*

• Weighted A* defines an evaluation function f(n):

f(n) = g(n) + *h(n)

–  > 1 introduces a bias towards states that are closer to the goal.

–  == 1 generates a provably optimal solution (assuming
admissible heuristic).

START GOAL
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Weighted A*

• Weighted A* defines an evaluation function f(n):

f(n) = g(n) + *h(n)

–  > 1 introduces a bias towards states that are closer to the goal.

–  == 1 generates a provably optimal solution (assuming
admissible heuristic).

• Search is typically orders of magnitude faster
• Path that is discovered may be sub-optimal (by factor

that depends on )
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Question about weighted a-star: https://forms.gle/7xZQVn9Fiakr7ZcF9

Susan Jaglal



Anytime A*

• Weighted A* can be used to construct an anytime
algorithm:
– Find the best path for a given 
– Reduce and re-plan

 = 2
13 node expansions 
Solution length: 12

 = 1.5
15 node expansions 
Solution length: 12

 = 1
20 node expansions 
Solution length: 10
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Effect of Heuristic Functions
• What  portion  of  the  state  space  will  be

explored by UCS?  A*?  Greedy search?
Weighted A*?

START GOAL

Stronger condition on h(n): 
Monotonic (or consistent)

• Stronger  condition  than  admissibility

• A  monotone heuristic satisfies the condition
h(n1) ≤ c(n1, a, n2) + h(n2)

• Note  that  there  might  more
than  one  transition
(action) that joins n1 and
n2, and the inequality must
hold for all of them.

• If h(n) is admissible and
monotonic, search will be
both optimal and not
“locally” mislead. Question about monotonicity: 

https://forms.gle/EuTS6fJPr8nezuY27

Consistency implies Admissibility
Assume consistency: h(n1) ≤ c(n1,a,n2) + h(n2)
Prove admissible: h(n) ≤  h*(n)

If no path exists from n to a goal, h*(n) =  and h(n) ≤  h*(n).
Let the path to from n to ngoal be an OPTIMAL path from n 
to a goal. Call the cost of this path h*(n), and call the cost of each 
sub‐path from ni to ngoal, h*(ni).
We will prove h(n) ≤  h*(n) by induction on the length of this 
optimal path.

Susan Jaglal



Proof by Induction
Assume consistency: h(n1) ≤ c(n1,a,n2) + h(n2)
Prove admissible: h(n) ≤  h*(n)
Base Case:
h(ngoal) = 0 ≤ h*(ngoal) = 0
h(n1) ≤ c(n1,a1,ngoal) + h(ngoal) ≤ c(n1,a1,ngoal) + h*(ngoal) =  h*(n1) 
Induction:

Assume h(ni) ≤ h*(ni)

h(ni‐1) ≤ c(ni‐1,ai‐1,ni) + h(ni) ≤ c(ni‐1,ai‐1,ni) + h*(ni) = h*(ni‐1)

Some consequences of 
Monotonicity

1. f-values of states in a path are non-decreasing.
i.e. if n1 and n2 are nodes along a path, then f(n1) ≤ f(n2)

Proof: f(n1) = g(n1) + h(n1) = cost(path to n1)+ h(n1)
≤ g(n1) + c(n1, a, n2) + h(n2)

But g(n1) + c(n1, a, n2) + h(n2) = g(n2) + h(n2) = f(n2) 

Some consequences of 
Monotonicity

1. f-values of states in a path are non-decreasing.
i.e. if n1 and n2 are nodes along a path, then f(n1) ≤ f(n2)

Proof: f(n1) = g(n1) + h(n1) = cost(path to n1)+ h(n1)
≤ g(n1) + c(n1, a, n2) + h(n2)

But g(n1) + c(n1, a, n2) + h(n2) = g(n2) + h(n2) = f(n2) 

So f(n1) ≤ f(n2)

Some consequences of 
Monotonicity

2. If n2 is expanded after n1, then f(n1) ≤  f(n2).
i.e. f-values of nodes that are expanded cannot decrease.



Some consequences of 
Monotonicity

2. If n2 is expanded after n1, then f(n1) ≤  f(n2).
i.e. f-values of nodes that are expanded cannot decrease

during the search.

Why? When n1 was selected for expansion, n2 was either:

1. Already on the frontier, meaning f(n1) ≤ f(n2).  Otherwise
we would have expanded n2 before n1.

2. Added to the frontier as a result of n1’s expansion,
meaning n2 and n1 lie along the same path. If this is the
case, as we demonstrated on the prior slide, f(n1) ≤ f(n2).

Some consequences of 
Monotonicity

3. If node n has been expanded, every path with a lower f-value
than n has already been expanded.

Some consequences of 
Monotonicity

3. If node n has been expanded, every path with a lower f-value
than n has already been expanded.

Say we just expanded node ni on a path to node nk, and
that f(nk) < f(n).
This means ni+1 is on the frontier and f(ni+1)  ≤ f(nk),
because they are both on the same path.
BUT if ni+1 were on the frontier at the same time as node n,
it would have been expanded before n because f(ni+1) ≤
f(nk) < f(n).
Thus, n can’t have been expanded before every path with a
lower f-value has been expanded.

Some consequences of 
Monotonicity

4. The first time A* expands a node, it has found the minimum cost
path to that node.

f(of the first discovered path to n) = cost(of the first discovered path 
to n) + h(n).

Likewise,
f(of any other path to n) = cost(of any other path to n) + h(n).

From the prior slide we know:
f(of the first discovered path to n) ≤ f(of any other path to n).

This means, by substitution:
cost(of 1st discovered path to n) ≤ cost(of any other path to n) 

Hence, the first discovered path is the optimal one!



Monotonic, Admissible A*
Complete?

YES. Consider a least cost path to a goal node
–SolutionPath = <Start→ n1→ …→ G> with cost c(SolutionPath).
–Since each action has a cost ≥ ε > 0, there are only a finite number of paths
that have f-value < c(SolutionPath). None of these paths lead to a goal node
since SolutionPath is a least cost path to the goal.
–So eventually SolutionPath, or some equal cost path to a goal must be
expanded.

Time and Space complexity?

–When h(n) = 0 for all n, h is monotone (A* becomes uniform-cost search)!
–When h(n) > 0 for some n and still admissible, the number of nodes
expanded will be no larger than uniform-cost.
–Hence the same bounds as uniform-cost apply. (These are worst case
bounds). Still exponential complexity unless we have a very good h!
–In real world problems, we sometimes run out of time and memory. We
will introduce IDA* to address some memory  issues, but IDA* isn’t very
good when many cycles are present.

Monotonic, Admissible A*
Optimal?

YES. As we saw, the first path to a goal node must be 
optimal. 

Cycle Checking?

We can use a simple implementation of cycle checking 
(multiple path checking) - just reject all search nodes that 
visit a state already visited by a previously expanded 
node.  We need keep only the first path to a state, 
rejecting all subsequent paths.

Limitations of A* Search

• Observation:  While  A*  may  expand  less of the
state space, it is still constrained by speed or
memory (many states are explored, on Frontier).

• Tools to address these problems:
– IDA* (Iterative Deepening A*) ‐ similar to

Iterative Deepening Search.
– Weighted A* ‐ A* with an added weight, to bias

exploration toward goal. We looked at this a bit 
last time!

IDA* ‐ Iterative Deepening A*
Objective: reduce memory requirements for A*
• Like iterative deepening, but now the “cutoff” is the f-value (g+h)

rather than the depth
• At each iteration, the cutoff value is the smallest f-value of any node

that exceeded the cutoff on the previous iteration
• Avoids overhead associated with keeping a sorted queue of nodes,

and the open list occupies only linear space.
• Two new parameters:

– curBound  (any node with a bigger f-value is discarded)
– smallestNotExplored (the smallest f-value for discarded nodes in

a round); when Frontier becomes empty, the search starts a new
round with this bound.

– To compute “smallestNotExplored” most readily, expand all nodes
with f-value EQUAL to the f-limit.



IDA* Example: 8-Puzzle

0 + 4 = g(n) + h(n) = 4 

1 + 6 = g(n) + h(n) = 7

f(n) = g(n) + h(n) 
h(n) = number of misplaced tiles
blank tile is white

Cutoff=4

IDA* Example: 8-Puzzle
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8-Puzzle
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IDA* ‐ Iterative Deepening A*

• Optimal?
• Complete?
• Time and Space Complexity?
• Cycle Checking?
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