
Heuristic Search
• Reading note: Chapter 4 in R&N covers heuristic

search.
• 2nd Edition of R&N is (temporarily) available at: https://

catalog.hathitrust.org/Record/004917484? type%5B%
5D=all&lookfor%5B%5D=Artificial% 20Intelligence%3A
%20A%20Modern% 20Approach%20&ft=ft

• Also https://artint.info/2e/html/ArtInt2e.Ch3.S6.html

CSC384, University of Toronto

Heuristic functions
We can encode each notion of the “ merit” of a
state into a heuristic function, h(n).

Heuristics are sensitive to the problem domain.

Heuristic for planning a path through a maze?

For solving a Rubick’s cube?

CSC384, University of Toronto

CSC384, University of Toronto

Heuristic Search
• If h(n1) < h(n2) this means that we guess that it
is cheaper to get to the goal from n1 than

from n2.

• We require that
– h(n) = 0 for every node n whose terminal state
satisfies the goal.

– Zero cost of achieving the goal from node that
already satisfies the goal.

Euclidean distance as h(s)

Say we want to plan a path from Arad to Bucharest, and we know the straight
line distance from each city to our goal. This lets us plan our trip by picking

cities at each time point that minimize the distance to our goal (or maximize our
heuristic).

CSC384, University of Toronto

Best first (greedy) search

If we only use h(n) to guide our search, the search strategy is called Greedy
or Best First Search

How can it possibly go wrong??

CSC384, University of Toronto

Best first (greedy) search

In red is the path we selected. In green is the shortest path between

Arad and Bucharest. What happened?

CSC384, University of Toronto

Modifying the search
How to avoid the mistake?

CSC384, University of Toronto

Modifying the search
How to avoid the mistake?

Take into account the cost of getting to the node as well as our estimate of the cost of
getting to the goal from the node.

Define an evaluation function f(n):

f(n) = g(n) + h(n)

g(n) is the cost of the path to node n
h(n) is the heuristic estimate of the cost of achieving the goal from n.

Always expand the node with lowest f-value on Frontier.

The f-value, f(n) is an estimate of the cost of getting to the goal via the node (path) n.
I.e., we first follow the path n then we try to get to the goal. f(n) estimates the total
cost of such a solution.

CSC384, University of Toronto

What will A* do here?

CSC384, University of Toronto

What will happen here??

CSC384, University of Toronto

Terminate only after we

have REMOVED the

goal from the Frontier.

CSC384, University of Toronto

What happens when we visit
nodes twice?

CSC384, University of Toronto

What happens when we visit
nodes twice?

If A* discovers a lower cost path through a state as it is searching, it should
update the order of that state on the Frontier, based on the lower path cost.

CSC384, University of Toronto

Is A* Guaranteed Optimal?

CSC384, University of Toronto CSC384, University of Toronto

Properties of A* depend on
conditions on h(n)

• To achieve completeness, optimality, and
desirably time and space complexity with A*
search, we must put some conditions on the
heuristic function h(n) and the search space.

CSC384, University of Toronto

Condition on h(n): Admissible

• Assume each transition due to an action a has cost ≥ ε > 0.
• Let h*(n) be the cost of an optimal path from n to a goal node

(if there is no path). Then an admissible heuristic satisfies the
condition:

h(n) ≤ h*(n)

an admissible heuristic never over-estimates the cost to reach the
goal, i.e., it is optimistic

• Hence h(g) = 0, for any goal node g
• Also h*(n) = if there is no path from n to a goal node

Problem!

Search animations: Pac Man
https://www.youtube.com/watch?v=2XjzjAfGWzY

CSC384, University of Toronto

Back to admissibility
Which heuristics are admissible for the 8 puzzle?
• h(n) = number of misplaced tiles
• h(n) = total Manhattan distance between tile locations in S and goal

locations in G
• h(n) = min (2, h*[n])
• h(n) = h*(n)
• h(n) = max (2, h*[n])
• h(n) = 0

CSC384, University of Toronto

Record your answers at https://forms.gle/n7aWKFT4TSy6vDtJ9

Admissible heuristics
Say for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 8
• h2(S) = ? 3+1+2+2+2+3+3+2 = 18

Which heuristic might be preferable, and why?

How to build a heuristic?

A useful technique is to simplify a problem when building
heuristics, and to let h(n) be the cost of reaching the goal in the
easier problem.
For example, in the 8-Puzzle you can only move a tile from
square A to B if A is adjacent (left, right, above, below) to B and
B is blank
We can relax some of these conditions and:

1. allow a move from A to B if A is adjacent to B (i.e. we
can ignore whether or not position is blank),

2. allow a move from A to B if B is blank (i.e. we can
ignore adjacency),

3. allow all moves from A to B (ignore both conditions).

How to build a heuristic?
• #3 leads to the misplaced tiles heuristic.

– To solve the puzzle, we need to move each tile into its final
position.

– Number of moves = number of misplaced tiles.
– Clearly h(n) = number of misplaced tiles ≤ the h*(n) the cost

of an optimal sequence of moves from n.
• #1 leads to the Manhattan distance heuristic.

– To solve the puzzle we need to slide each tile into its final
position.

– We can move vertically or horizontally.
– Number of moves = sum over all of the tiles of the number

of vertical and horizontal slides we need to move that tile
into place.

– Again h(n) = sum of the Manhattan distances ≤ h*(n)
• in a real solution we need to move each tile at least that

that far and we can only move one tile at a time.

Admissible heuristics make for optimal search
Why?

Admissible heuristics make for optimal search
Why?

• Say we have an optimal path to ngoal with cost g(ngoal).
• Let n’goal be a sub-optimal path, meaning g(n’goal) > g(ngoal).
• Let n” be any sub-path of the optimal path on the Frontier.

Is it possible for the path to n’goal to be explored before the path to ngoal?

• No! Because f(ngoal) < f(n’goal)• Also f(n’’) <= f(ngoal), because our heuristic is admissible.
• So, f(n’’) < f(n’goal)

Meaning sub-paths on the optimal path to ngoal will be explored before

any sub-optimal path to the goal!

• A* expands nodes, or paths, in order of increasing f value
• Gradually adds "f-contours"
• Each contour contains all paths with f=fi, where fi < fi+1

Admissible heuristics make for optimal search

Weighted A*

• Weighted A* defines an evaluation function f(n):

f(n) = g(n) + *h(n)

– > 1 introduces a bias towards states that are closer to the goal.

– == 1 generates a provably optimal solution (assuming
admissible heuristic).

START GOAL

CSC384, University of Toronto

Weighted A*

• Weighted A* defines an evaluation function f(n):

f(n) = g(n) + *h(n)

– > 1 introduces a bias towards states that are closer to the goal.

– == 1 generates a provably optimal solution (assuming
admissible heuristic).

• Search is typically orders of magnitude faster
• Path that is discovered may be sub-optimal (by factor

that depends on)

CSC384, University of Toronto

Question about weighted a-star: https://forms.gle/7xZQVn9Fiakr7ZcF9

Susan Jaglal

Anytime A*

• Weighted A* can be used to construct an anytime
algorithm:
– Find the best path for a given
– Reduce and re-plan

 = 2
13 node expansions
Solution length: 12

 = 1.5
15 node expansions
Solution length: 12

 = 1
20 node expansions
Solution length: 10

CSC384, University of Toronto

Effect of Heuristic Functions
• What portion of the state space will be

explored by UCS? A*? Greedy search?
Weighted A*?

START GOAL

Stronger condition on h(n):
Monotonic (or consistent)

• Stronger condition than admissibility

• A monotone heuristic satisfies the condition
h(n1) ≤ c(n1, a, n2) + h(n2)

• Note that there might more
than one transition
(action) that joins n1 and
n2, and the inequality must
hold for all of them.

• If h(n) is admissible and
monotonic, search will be
both optimal and not
“locally” mislead. Question about monotonicity:

https://forms.gle/EuTS6fJPr8nezuY27

Consistency implies Admissibility
Assume consistency: h(n1) ≤ c(n1,a,n2) + h(n2)
Prove admissible: h(n) ≤ h*(n)

If no path exists from n to a goal, h*(n) = and h(n) ≤ h*(n).
Let the path to from n to ngoal be an OPTIMAL path from n
to a goal. Call the cost of this path h*(n), and call the cost of each
sub‐path from ni to ngoal, h*(ni).
We will prove h(n) ≤ h*(n) by induction on the length of this
optimal path.

Susan Jaglal

Proof by Induction
Assume consistency: h(n1) ≤ c(n1,a,n2) + h(n2)
Prove admissible: h(n) ≤ h*(n)
Base Case:
h(ngoal) = 0 ≤ h*(ngoal) = 0
h(n1) ≤ c(n1,a1,ngoal) + h(ngoal) ≤ c(n1,a1,ngoal) + h*(ngoal) = h*(n1)
Induction:

Assume h(ni) ≤ h*(ni)

h(ni‐1) ≤ c(ni‐1,ai‐1,ni) + h(ni) ≤ c(ni‐1,ai‐1,ni) + h*(ni) = h*(ni‐1)

Some consequences of
Monotonicity

1. f-values of states in a path are non-decreasing.
i.e. if n1 and n2 are nodes along a path, then f(n1) ≤ f(n2)

Proof: f(n1) = g(n1) + h(n1) = cost(path to n1)+ h(n1)
≤ g(n1) + c(n1, a, n2) + h(n2)

But g(n1) + c(n1, a, n2) + h(n2) = g(n2) + h(n2) = f(n2)

Some consequences of
Monotonicity

1. f-values of states in a path are non-decreasing.
i.e. if n1 and n2 are nodes along a path, then f(n1) ≤ f(n2)

Proof: f(n1) = g(n1) + h(n1) = cost(path to n1)+ h(n1)
≤ g(n1) + c(n1, a, n2) + h(n2)

But g(n1) + c(n1, a, n2) + h(n2) = g(n2) + h(n2) = f(n2)

So f(n1) ≤ f(n2)

Some consequences of
Monotonicity

2. If n2 is expanded after n1, then f(n1) ≤ f(n2).
i.e. f-values of nodes that are expanded cannot decrease.

Some consequences of
Monotonicity

2. If n2 is expanded after n1, then f(n1) ≤ f(n2).
i.e. f-values of nodes that are expanded cannot decrease

during the search.

Why? When n1 was selected for expansion, n2 was either:

1. Already on the frontier, meaning f(n1) ≤ f(n2). Otherwise
we would have expanded n2 before n1.

2. Added to the frontier as a result of n1’s expansion,
meaning n2 and n1 lie along the same path. If this is the
case, as we demonstrated on the prior slide, f(n1) ≤ f(n2).

Some consequences of
Monotonicity

3. If node n has been expanded, every path with a lower f-value
than n has already been expanded.

Some consequences of
Monotonicity

3. If node n has been expanded, every path with a lower f-value
than n has already been expanded.

Say we just expanded node ni on a path to node nk, and
that f(nk) < f(n).
This means ni+1 is on the frontier and f(ni+1) ≤ f(nk),
because they are both on the same path.
BUT if ni+1 were on the frontier at the same time as node n,
it would have been expanded before n because f(ni+1) ≤
f(nk) < f(n).
Thus, n can’t have been expanded before every path with a
lower f-value has been expanded.

Some consequences of
Monotonicity

4. The first time A* expands a node, it has found the minimum cost
path to that node.

f(of the first discovered path to n) = cost(of the first discovered path
to n) + h(n).

Likewise,
f(of any other path to n) = cost(of any other path to n) + h(n).

From the prior slide we know:
f(of the first discovered path to n) ≤ f(of any other path to n).

This means, by substitution:
cost(of 1st discovered path to n) ≤ cost(of any other path to n)

Hence, the first discovered path is the optimal one!

Monotonic, Admissible A*
Complete?

YES. Consider a least cost path to a goal node
–SolutionPath = <Start→ n1→ …→ G> with cost c(SolutionPath).
–Since each action has a cost ≥ ε > 0, there are only a finite number of paths
that have f-value < c(SolutionPath). None of these paths lead to a goal node
since SolutionPath is a least cost path to the goal.
–So eventually SolutionPath, or some equal cost path to a goal must be
expanded.

Time and Space complexity?

–When h(n) = 0 for all n, h is monotone (A* becomes uniform-cost search)!
–When h(n) > 0 for some n and still admissible, the number of nodes
expanded will be no larger than uniform-cost.
–Hence the same bounds as uniform-cost apply. (These are worst case
bounds). Still exponential complexity unless we have a very good h!
–In real world problems, we sometimes run out of time and memory. We
will introduce IDA* to address some memory issues, but IDA* isn’t very
good when many cycles are present.

Monotonic, Admissible A*
Optimal?

YES. As we saw, the first path to a goal node must be
optimal.

Cycle Checking?

We can use a simple implementation of cycle checking
(multiple path checking) - just reject all search nodes that
visit a state already visited by a previously expanded
node. We need keep only the first path to a state,
rejecting all subsequent paths.

Limitations of A* Search

• Observation: While A* may expand less of the
state space, it is still constrained by speed or
memory (many states are explored, on Frontier).

• Tools to address these problems:
– IDA* (Iterative Deepening A*) ‐ similar to

Iterative Deepening Search.
– Weighted A* ‐ A* with an added weight, to bias

exploration toward goal. We looked at this a bit
last time!

IDA* ‐ Iterative Deepening A*
Objective: reduce memory requirements for A*
• Like iterative deepening, but now the “cutoff” is the f-value (g+h)

rather than the depth
• At each iteration, the cutoff value is the smallest f-value of any node

that exceeded the cutoff on the previous iteration
• Avoids overhead associated with keeping a sorted queue of nodes,

and the open list occupies only linear space.
• Two new parameters:

– curBound (any node with a bigger f-value is discarded)
– smallestNotExplored (the smallest f-value for discarded nodes in

a round); when Frontier becomes empty, the search starts a new
round with this bound.

– To compute “smallestNotExplored” most readily, expand all nodes
with f-value EQUAL to the f-limit.

IDA* Example: 8-Puzzle

0 + 4 = g(n) + h(n) = 4

1 + 6 = g(n) + h(n) = 7

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles
blank tile is white

Cutoff=4

IDA* Example: 8-Puzzle

4

4

7

Cutoff=4

7

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles
blank tile is white

IDA* Example: 8-Puzzle

4

4

7

Cutoff=4

7

6

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles
blank tile is white

IDA* Example: 8-Puzzle

4

4

7

Cutoff=4

7

6

6

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles

4

IDA* Example: 8-Puzzle

4

7

Cutoff=4

7

6

67

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles

IDA* Example: 8-Puzzle

4

7

Cutoff=6

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles

IDA* Example: 8-Puzzle

4

4

7

Cutoff=6

7

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles

8-Puzzle

4

4

7

Cutoff=6

7

6

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles

8-Puzzle

4

4

7

Cutoff=6

7

6

8

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles

8-Puzzle

4

4

7

Cutoff=6

7

6

8

6

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles

8-Puzzle

4

4

7

Cutoff=6

7

6

8

6 6

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles

8-Puzzle

4

4

7

Cutoff=6

7

6

8

6 6

f(n) = g(n) + h(n)
h(n) = number of misplaced tiles

IDA* ‐ Iterative Deepening A*

• Optimal?
• Complete?
• Time and Space Complexity?
• Cycle Checking?

	csc384s19-Lecture03-Heuristic-Search.pdf
	Blank Page
	Blank Page
	Blank Page
	Blank Page

