Choose the variable with the minimum remaining values ("MRV" heuristic).

+ two
In case of a tie, choose the variable that is involved in the most constraints with other unassigned
four variables ("degree" heuristic).

Variables

$$
\mathrm{t}, \mathrm{w}, \mathrm{o}, \mathrm{f}, \mathrm{u}, \mathrm{r}, \mathrm{c} 1, \mathrm{c} 2, \mathrm{c} 3
$$

Constraints

$$
\begin{gathered}
\text { all-diff(t, w, of, f, r) } \\
o+o=r+c 1^{*} 10 \\
w+w+c 1=u+c 2^{*} 10 \\
t+t+c 2=o+c 3^{*} 10 \\
f=c 3
\end{gathered}
$$

+ two
four
all initially have a domain $\{0-9\}$ you might say that the carries and f have a domain of $\{0,1\}$ tho, in which case these would tie for MRV.

Let's say all variables have same domain and we need to compute the degree heuristic to break the tie.

$$
\begin{gathered}
\text { degree }(f)=5+1=6 \\
\text { degree }(t)=5+3=8 \\
\text { degree }(u)=5+3=8 \\
\text { degree }(r)=5+2=7 \\
\text { degree }(w)=5+3=8 \\
\text { degree }(o)=5+2+3=10 \\
\text { degree(c3) }) 3+1=4 \\
\text { degree }(c 1)=3+2=5 \\
\text { degree }(c 2)=3+3=6
\end{gathered}
$$

Let's say all variables have same domain and we need to compute the degree heuristic to break the tie.

$$
\begin{gathered}
\text { degree }(f)=5+1=6 \\
\text { degree }(t)=5+3=8 \\
\text { degree }(u)=5+3=8 \\
\text { degree }(r)=5+2=7 \\
\text { degree }(w)=5+3=8 \\
\text { degree }(o)=5+2+3=10 \\
\text { degree(c3) })=3+1=4 \\
\text { degree }(c 1)=3+2=5 \\
\text { degree }(c 2)=3+3=6
\end{gathered}
$$

The variable o is of the highest degree.

