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• R&N Chapter 5.1, 5.2, 5.3, 5.6 cover some of the material we cover 
here. Section 5.6 has an interesting overview of State-of-the-Art game 
playing programs.

• Section 5.5 extends the ideas to games with uncertainty (We won’t 
cover that material but it makes for interesting reading).

• Material is also covered in Chapter 11 of P&M: https://artint.info

Acknowledgements: Thanks to Craig Boutilier, Andrew Moore, 
Faheim Bacchus, Hojjat Ghaderi, Dan Klein, Pieter Abbeel, 

Rich Zemel, Sheila McIlraith, Russel and Norvig and an 
increasingly long list of others, from whom these slides have 

been adapted.  

Game Tree Search
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So far our search problems have assumed we have complete control of 
environment 

• State does not change unless our program changes it.
• All we need to compute is a path to a goal state.

This assumption not always reasonable 
• Environments may be stochastic (e.g., the weather, traffic accidents).
• There may be others whose interests conflict with yours
• Searches we have covered thus far may find a path to a goal, but this

path may not hold in situations where other intelligent agents are
changing states in response to your actions.

Generalizing Our Search Problems
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• We need to generalize our view of search to handle state changes that are
not in the control of the player (or agent).

• One generalization (today’s topic) yields game tree search
• A game tree can account for actions of more than one payer or

agent.
• Agents are all acting to maximize their profits
• Others’ profits might not have a positive effect on your profits.

Generalizing Our Search Problems
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- There are two (or more) agents making changes to
the world (the state)
- Each agent has their own interests
- e.g., each agent has a different goal; or assigns
different costs to different paths/states

- Each agent tries to alter the world so as to best
benefit itself.

What are Key Features of a Game?
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What makes games hard?

• How you should play depends on how you think the other
person will play; but how they play depends on how they
think you will play; so how you should play depends on
how you think they think you will play; but how they play
should depend on how they think you think they think you
will play; …
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Checkers: 1950: First computer player. 1994:
First computer champion: Chinook ended 40-
year-reign of human champion Marion Tinsley 
using complete 8-piece endgame. 2007: 
Checkers solved! 

Chess: 1997: Deep Blue defeats human
champion Gary Kasparov in a six-game match. 
Deep Blue examined 200M positions per 
second, used very sophisticated evaluation and 
undisclosed methods for extending some lines 
of search up to 40 ply. Current programs are 
even better, if less historic. 

Go: Best program AlphaGo has beaten best
Go players. In Go, b > 250! Classic programs 
use pattern knowledge bases, but AlphaGo uses 
Monte Carlo (randomized) tree search 
methods, along with Neural Nets to compute 
heuristic

Game Playing State-of-the-Art

(slide from Klein and Abbel)
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Two-player: 

•i.e., games that are not for three, not for one, not for six or eight.
For two.  Only two.

Discrete: 

•Games states or decisions can be mapped on discrete values.

Finite:

•There are only a finite number of states and possible decisions
that can be made.

Game Properties
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Zero-sum: Fully competitive 

•Fully competitive: if one player wins, the other loses an equal amount;  
e.g. Poker – you win what the other player lose

•Note that some games don’t have this property: outcomes may be preferred
by both players, or at least values of states aren’t diametrically opposed

Deterministic: no chance involved 

•no dice, or random deals of cards, or coin flips, etc.

Perfect information: all aspects of the state are fully observable 

•e.g., no hidden cards

Game Properties
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ANSWER HERE!
http://etc.ch/ekXi
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 10



 11

• Scissors cut paper, paper covers
rock, rock smashes scissors

• Represented as a matrix: Player I
chooses a row, Player II chooses a
column

• Payoff to each player in each cell
(Pl.I / Pl.II)

• 1: win, 0: tie, -1: loss
so it’s zero-sum 
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Game Example: Rock, Paper, Scissors
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Game Example: Prisoners' Dilemma

• Two accused prisoners in cells (A 
and B).  

• If one confesses and the other 
doesn't, confessor goes free and 
the other gets 4 years in jail.

• If both confess,both get 3 years.

• If neither confess, both get 1 year 
in jail.

ANSWER HERE! http://etc.ch/ekXi   
RESULTS HERE https://directpoll.com/r?XDbzPBd3ixYqg8Ave5sE9MkTtkd5vAYDdCsIT7a9h 
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•Key point of R,P,S: what you should do depends on what
other player does

•But R,P,S is a simple “one shot” game
• single move each
• in game theory: a strategic or normal form game

•Many games extend over multiple moves
• turn-taking: players act alternatively
• e.g., chess, checkers, etc.
• in game theory: extensive form games

•We will focus on the extensive form
• that’s where the computational questions emerge

Extensive Form Two-Player Zero-Sum Games
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• Two players A (Max) and B (Min)

• Set of states S (a finite set of states of the game)

• An initial state I ∊ S (where game begins)

• Terminal positions T ⊆ S (Terminal states of the game: states where
the game is over)

• Successors (or Succs - a function that takes a state as input and
returns a set of possible next states to whomever is due to move)

• Utility or payoff function U : T → ℝ (a mapping from terminal states to
real numbers that show good is each terminal state for player A – and 
bad for player B.) 

• Why don’t we need a utility function for player B?

Two-Player Zero-Sum Game – Definition
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Players alternate moves (starting with A, or Max) 
• Game ends when some terminal t ∊ T is reached

A game state: a state-player pair 
• Tells us what state we’re in and whose move it is

Utility function and terminals replace goals 
• A, or Max, wants to maximize the terminal payoff
• B, or Min, wants to minimize the terminal payoff

Think of it as: 
• A, or Max, gets U(t) and B, or Min, gets –U(t) for terminal node t
• This is why it’s called zero (or constant) sum

Two-Player Zero-Sum Game – Intuition
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Game tree looks like a search tree 
• Layers reflect alternating moves between A and B

Player A doesn’t decide where to go alone 
• After A moves to a state, B decides which of the states children to move

to

Thus A must have a strategy 
• Must know what to do for each possible move of B
• One sequence of moves will not suffice: “What to do” will depend on how

B will play

Game Tree
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Move #1 -- > Move #2 -- >

ANSWER HERE! 
http://etc.ch/ekXi
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Assume that the other player will always play their best move 
• you always play a move that will minimize the payoff that could be

gained by the other player.
• My minimizing the other player’s payoff, you maximize your own.

Note that if you know that Min will play poorly in some circumstances, there 
might be a better strategy than MiniMax (i.e., a strategy that gives you a 
better payoff).  

In the absence of that knowledge, MiniMax “plays it safe”

The MiniMax Strategy
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t1 t2 t3 t4 t5 t6 t7

s1 s2 s3

s0
A (max) plays

B(min) plays

terminal

7 -6 4 3 9 -10 2

The terminal nodes have a utility value (U). 
We can compute a “utility” for the non-terminal 

states by assuming both players always play their 
best move.

MiniMax Strategy payoffs
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ANSWER HERE! 
http://etc.ch/ekXi
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• Build full game tree (all leaves are terminals)
• Root is start state, edges are possible moves, etc.
• Label terminal nodes with utilities

• Back values up the tree
• U(t) is defined for all terminals (part of input)
• U(n) = min {U(c) : c is a child of n} if n is a Min node
• U(n) = max {U(c) : c is a child of n} if n is a Max node

MiniMax Strategy
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• The values labeling each state are the values that Max will
achieve in that state if both Max and Min play their best
moves.
• Max plays a move to change the state to the highest valued min child.
• Min plays a move to change the state to the lowest valued max child.

• If Min plays poorly, Max could do better, but never worse.
• If Max, however knows that Min will play poorly, there might be a better

strategy of play for Max than MiniMax.

MiniMax Strategy
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Let’s practice by computing all the game 
theoretic values for nodes in this tree.
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ANSWER HERE!
http://etc.ch/ekXi



 32

Let’s practice by computing all the game 
theoretic values for nodes in this tree.
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0    -3    3   -3   -2   2   -5    0    1   -3   -5   -3   2 
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Let’s practice by computing all the game 
theoretic values for nodes in this tree.

A
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B

0    -3    3   -3   -2   2   -5    0    1   -3   -5   -3   2 

0  3  2  0  1   -5   -3    2 
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0 -3  3 -3 -2  2 -5  0  1 -3   -5   -3   2

0  3  2  0  1   -5   -3    2 

0  2  0  1 -5  2 

0  2  1  2 

0  1 

1 

Question: if both players play rationally, what path will be 
followed through this tree?
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• Building the entire game tree and backing up values gives each player
their strategy.

• However, the game tree is exponential in size.

• Furthermore, as we will see later it is not necessary to know all of the tree.

• To solve these problems we find a depth-first implementation of minimax.

• We run the depth-first search after each move to compute what is the next
move for the MAX player. (We could do the same for the MIN player).

• This avoids explicitly representing the exponentially sized game tree: we
just compute each move as it is needed.

Depth-First Implementation of MiniMax 
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Depth-First Implementation of MiniMax 

DFMiniMax(n, Player) //return Utility of state n given that 
     //Player is MIN or MAX 

 If n is TERMINAL 
 Return U(n) //Return terminal states utility 

  //(U is specified as part of game) 

//Apply Player’s moves to get successor states. 
 ChildList = n.Successors(Player) 
If Player == MIN 

  return minimum of DFMiniMax(c, MAX) over c  ∈ ChildList 
 Else //Player is MAX 

  return maximum of DFMiniMax(c, MIN) over c  ∈ ChildList

ANSWER HERE!
http://etc.ch/ekXi
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• Notice that the game tree has to have finite depth for this to
work

• Advantage of DF implementation: space efficient

• MiniMax will expand O(bd) states, which is both a BEST and
WORST case scenario.
• We must traverse the entire search tree to evaluate all options
• We can’t be lucky as in regular search and find a path to a goal

before searching the entire tree.

Depth-First Implementation of MiniMax 
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It is not necessary to examine entire tree to make correct 
MiniMax decision 

Assume depth-first generation of tree 
• After generating value for only some of n’s children we can prove that

we’ll never reach n in a MiniMax strategy.
• So we needn’t generate or evaluate any further children of n!

Two types of pruning (cuts): 
• pruning of max nodes (α-cuts)
• pruning of min nodes (β-cuts)

Pruning
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Pruning

Assume the only values of terminals are -1 and 1 and we’re 
running a DFS implementation of MiniMax.  Where can we 

prune our tree?

ANSWER HERE!
http://etc.ch/ekXi
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Pruning

If any state is a forced win for a current player, don’t bother 
evaluating additional successors.  This can end up pruning 

a lot of your tree! 

X

X
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At a Max node n: 
• Let β be the lowest value of n’s siblings examined so far (siblings to the

left of n that have already been searched)
• Let α be the highest value of n’s children examined so far (changes as

children examined)

A (max)
B (min)

terminal

s1 s13 s16

s0

s2 s6

T3 
8

T4 
10

T5 
5

5
β = 5 when only one sibling value is known 

Sequence of values for α as s6’s children 
are explored: 

α= 8; α= 10; α= 10

Cutting Max Nodes (Alpha Cuts)
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While at a Max node n, if α becomes ≥ β we can stop 
expanding the children of n 

• Min will never choose to move from n’s parent to n since it would choose
one of n’s lower valued siblings first.

n

P

s1 s2 s3

14 12 5

 β = 5

2 4 9

 α = 2 4 9

min node

Cutting Max Nodes (Alpha Cuts)
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At a Min node n: 
• Let α be the highest value of n’s sibling’s examined so far (fixed

when evaluating n)
• Let β be the lowest value of n’s children examined so far (changes

as children examined)

A (max)
B (min)

terminal
s1 s13 s16

s0

s2 s6
α =10

β =5 β =3

Cutting Min Nodes (Beta Cuts)
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If β becomes ≤ α we can stop expanding the children of n. 
• Max will never choose to move from n’s parent to n since it would

choose one of n’s higher value siblings first.

n

P

s1 s2 s3

6 2 7

 α = 7

9 8 3

β = 9 8 3

Cutting Min Nodes (Beta Cuts)
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Implementing Alpha-Beta Pruning 

AlphaBeta(n,Player,alpha,beta) //return Utility of state  
If n is TERMINAL 

return V(n) //Return terminal states utility 
ChildList = n.Successors(Player) 
If Player == MAX 
 for c in ChildList 

alpha = max(alpha, AlphaBeta(c,MIN,alpha,beta)) 
If beta <= alpha 

break 
 return alpha 
Else //Player == MIN 
  for c in ChildList  

beta = min(beta, AlphaBeta(c,MAX,alpha,beta)) 
If beta <= alpha 

      break  

return beta
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Implementing Alpha-Beta Pruning 

Initial call 

AlphaBeta(START_NODE,Player,-infinity,+infinity)
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Max

Max

Max

Min

Min

Min

0 -3

0

3

3

0

0

2

2

2

2

0

1
-3

1

1

-5

-5

-5

1

2

2

2

2

1

1

Example
Which computations can we avoid here, assuming we expand 

nodes left to right?
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Max

Max

Max

Min

Min

Min

Example



Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal
15



 50

This is an example of the best case scenario for alpha beta 
pruning.  The effective branching factor of the first layer is b. 

The effective branching of the second is 1.  The effective 
layer of the third is b.  And so on. 

A

A

B

Effectiveness of alpha beta pruning

         
ANSWER HERE!
http://etc.ch/ekXi

Overall complexity of the alpha beta search, in best case
scenario?

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal

Susan Jaglal



 51

Ordering of moves

• For MIN nodes the best pruning occurs if the best move for MIN (child
yielding lowest value) is explored first. (Triggers value <= alpha return early)

• For MAX nodes the best pruning occurs if the best move for MAX (child
yielding highest value) is explored first. (Triggers value >= beta return early).

• We don’t know which child has highest or lowest value without doing all of
the work!

• But we can use heuristics to estimate the value, and then choose the child
with highest (lowest) heuristic value.

• This can make a tremendous difference in practice.
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Effectiveness of alpha beta pruning

• With no pruning, you have to explore O(bd) nodes, which 
makes the run time of a search with pruning the same as 
plain MiniMax.

• If, however, the move ordering for the search is optimal
(meaning the best moves are searched first), the number 
of nodes we need to search using alpha beta pruning  
O(bd/2).  That means you can, in theory, search twice as 
deep!

• In Deep Blue, they found that alpha beta pruning meant 
the average branching factor at each node was about 6 
instead of 35.

Susan Jaglal
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Rational Opponents

Storing your strategy is a potential issue: 

• you must store “decisions” for each node you can reach by playing
optimally

• if your opponent has unique rational choices, this “decision” reflects a
single branch through game tree

• if there are “ties”, opponent could choose any one of the “tied” moves:
which means you must store a strategy for each sub-tree

• What if your opponent doesn’t play rationally? Will your stored strategies
work?

• Alternative is to re-compute moves at each stage

• In general, space is an issue.
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If you don’t know what kind of strategy your opponent uses, then Minimax might play it too safe. 

• Ensures you do as well as possible given the worst case (very smart opponent)

• But playing it safe might not lead to the best possible outcomes.

One important generalization is to consider probabilistic opponents, where your opponent 
chooses moves by chance. 

• i.e., it may be more likely your opponent picks the best action, but occasionally it may
pick the worst.

Probability is also useful when your opponent is “nature” , or when there are chance moves in 
the game, like throwing of dice. 

Expectimax search computes “average” values for nodes

•
•
•
•

Expectimax Search

MAX nodes are the same as in minimax search
CHANCE nodes are like MIN nodes but choice of move is uncertain
At chance nodes we calculate “expected value”, which is a weighted “average” 
MAX will pick nodes that maximize “expected value”.
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Expectimax Search

5

ANSWER HERE!
http://etc.ch/ekXi

MAX should pick the child with the greatest expected value. 
But, what about pruning?
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Expectimax Search

Note that for Minimax, the utilities assigned to terminals just have to get the relative 
order of values right.  We can scale them any way we want.

But for Expectimax, we need both order and magnitude of terminal values must have 
meaning!

n

0 40

.5 .5

n

20 30

.5 .5

n

0 1600

.5 .5

n

400 900

.5 .5

x2
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Expectimax Search

nxt_move, nxt_val
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“Real” games are too large to enumerate tree 
• e.g., chess branching factor is roughly 35
• Depth 10 tree: 2,700,000,000,000,000 nodes
• Even alpha-beta pruning won’t help here!

We must limit depth of search tree 
• Can’t expand all the way to terminal nodes
• We must make heuristic estimates about the values of the (non-terminal)

states at the leaves of the tree
• These heuristics are often called evaluation function
• evaluation functions are often learned

Practical Matters
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Examples of heuristic functions for 
games

• Example for tic tac toe: h(n) = [# of 3 lengths that are left open for player A]
- [# of 3 lengths that are left open for player B].

• Alan Turing’s function for chess: h(n) = A(n)/B(n) where A(n) is the sum of
the point value for player A’s pieces and B(n) is the sum for player B.

• Most evaluation functions are specified as a weighted sum of features: h(n) =
w1*feature1(n) + w2*feature2(n) + ... wi*featurei(n).  Weights can be learned.

• Deep Blue used about 6000 features in its evaluation function.
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Heuristics you might use to estimate “goodness” in: 
• Chess?
• Checkers?
• Your favorite video game?

Examples of heuristic functions for 
games
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• Issue: inability to expand tree to terminal nodes is relevant even in standard
search
• Often we can’t expect A* to reach a goal by expanding full frontier
• So we often limit our look-ahead, and make moves before we actually

know the true path to the goal
• Sometimes called online or real-time search

• In this case, we use the heuristic function not just to guide our search, but
also to commit to moves we actually make
• In general, guarantees of optimality are lost, but we reduce computational/

memory expense dramatically

An Aside on Large Search Problems
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1. We run A* (or our favorite search algorithm) until we
are forced to make a move or run out of memory. 

Note: no leaves are goals yet. 

2. We use evaluation function f(n) to decide which path
looks best (let’s say it is the red one). 

3. We take the first step along the best path (red), by
actually making that move. 

4. We restart search at the node we reach by making
that move. (We may actually cache the results of the
relevant part of first search tree if it’s hanging around, 

as it would with A*).

Real-time Search
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• What if we stop our search at a level in the search tree 
where subsequent moves dramatically change our 
evaluation?

• What if our opponent pushes this level off of the search 
horizon?

• It may make sense to make the depth we search to 
dynamically decided ....

Issues with A* for Games
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