A constraint \(C(V_1, V_2, V_3, ..., V_n) \) is **GAC wrt** a variable \(V_i \) iff for **every domain value** of \(V_i \), there exist domain values for \(V_1, V_2, ..., V_{i-1}, V_{i+1}, ..., V_n \) that satisfy \(C(V_1, V_2, V_3, ..., V_n) \).

\(C(V_1, V_2, V_3, ..., V_n) \) is **GAC** iff it is GAC with respect to **all variables** in its scope.

A **CSP** is **GAC** if and only if **all of its constraints** are GAC.
Say we find a value d of variable V_i that is \textbf{not consistent} wrt a constraint: that is, there is no assignments to the other variables that satisfy the constraint when $V_i = d$:

- d is said to be \textbf{Arc Inconsistent}.
- We can \textbf{remove} d from the domain of V_i as this value cannot lead to a solution (much like Forward Checking, but more powerful).

\textbf{Example:} $C(X, Y): X > Y$

$Dom[X] = \{1, 5, 11\}, Dom[Y] = \{3, 8, 15\}$
Pruning the domain of a variable to make a constraint GAC can make a different constraint no longer GAC.

Example: \(C_1(X, Y) : X > Y \), \(C_2(Y, Z) : Y > Z \)

\(\text{Dom}[X] = \{2, 3, 11\}, \text{Dom}[Y] = \{3, 8, 15\}, \text{Dom}[Z] = \{4, 6\} \)

Need to **re-achieve GAC** for some constraints whenever a domain value is **pruned**.

Answer a question! http://etc.ch/ekXi
GAC: Considerations

- All constraints must be GAC at every node of the search space. This is accomplished by removing from the domains of the variables all arc inconsistent values:
 - Every time we assign a value to a variable \(V \), we check all constraints over \(V \) and prune arc inconsistent values from the current domain of the other variables of the constraints.

- Removing a value from a variable domain may trigger further inconsistency. We have to repeat the procedure until everything is consistent:
 - Have a queue of constraints that need to be made GAC.
 - Constraints are added (back) to the queue if the domain of one of their variables is changed.
 - The procedure stops when the queue is empty.

- After backtracking from the current assignment the values that were pruned (as a result of that assignment) must be restored. Some bookkeeping needs to be done to remember which values were pruned by which assignment.
GAC: Map Coloring Example

\[C_1(SA, WA): SA \neq WA, \quad C_2(NT, WA): NT \neq WA, \quad C_3(SA, NT): SA \neq NT \]
\[C_4(SA, Q): SA \neq Q, \quad C_5(SA, NSW): SA \neq NSW, \quad C_6(SA, V): SA \neq V \]
\[C_7(NT, Q): NT \neq Q, \quad C_8(Q, NSW): Q \neq NSW, \quad C_9(NSW, V): NSW \neq V \]

Value Assignments: \(WA = R \)

Then, for \(SA \) and \(NT \), \(R \) becomes arc inconsistent wrt \(C_1 \) and \(C_2 \).

Current Domains:

\[\text{Dom}[SA] = \{R, G, B\} \quad \text{Dom}[NT] = \{R, G, B\} \]
\[\text{Dom}[Q] = \{R, G, B\} \quad \text{Dom}[NSW] = \{R, G, B\} \]
\[\text{Dom}[V] = \{R, G, B\} \quad \text{Dom}[T] = \{R, G, B\} \]
GAC: Map Coloring Example

\[C_1(SA, WA) : SA \neq WA, \quad C_2(NT, WA) : NT \neq WA, \quad C_3(SA, NT) : SA \neq NT \]
\[C_4(SA, Q) : SA \neq Q, \quad C_5(SA, NSW) : SA \neq NSW, \quad C_6(SA, V) : SA \neq V \]
\[C_7(NT, Q) : NT \neq Q, \quad C_8(Q, NSW) : Q \neq NSW, \quad C_9(NSW, V) : NSW \neq V \]

Value Assignments: \(WA = R, Q = G \)

Then, for \(SA, NT \) and \(NSW \), \(G \) becomes arc inconsistent wrt \(C_4, C_7, \) and \(C_8 \).

Current Domains:

\[Dom[SA] = \{G, B\} \quad Dom[NT] = \{G, B\} \]
\[Dom[Q] = \{R, G, B\} \quad Dom[NSW] = \{R, G, B\} \]
\[Dom[V] = \{R, G, B\} \quad Dom[T] = \{R, G, B\} \]

Answer a question! http://etc.ch/ekXi
Value Assignments: $Q_1 = 1$

Then $Q_2 = 1, Q_2 = 2, Q_3 = 1, Q_3 = 3, Q_4 = 1, Q_4 = 4$

become arc inconsistent.

Current Domains:

$\text{Dom}[Q_2] = \{1, 2, 3, 4\}$
$\text{Dom}[Q_3] = \{1, 2, 3, 4\}$
$\text{Dom}[Q_4] = \{1, 2, 3, 4\}$

Answer a question! [Link](http://etc.ch/ekXi)
Value Assignments: $Q_1 = 2$
Then $Q_2 = 1$, $Q_2 = 2$, $Q_2 = 3$, $Q_3 = 2$, $Q_3 = 4$, $Q_4 = 2$ become arc inconsistent.

Current Domains:

$$\text{Dom}[Q_2] = \{1, 2, 3, 4\}$$
$$\text{Dom}[Q_3] = \{1, 2, 3, 4\}$$
$$\text{Dom}[Q_4] = \{1, 2, 3, 4\}$$
Current Domains: $\text{Dom}[Q_2] = \{4\}$, $\text{Dom}[Q_3] = \{1\}$, $\text{Dom}[Q_4] = \{3\}$.

Now search no longer has to branch since only one value left for each variable. It just walks down to a solution assigning each variable in turn.
GAC-Based Propagation

- **Plain Backtracking** check a constraint only when it has zero unassigned variables.

- **Forward checking** checks a constraint only when it has one unassigned variables.

- **GAC** checks all constraints, leading to much more pruning in general.

 - Even at the root before any variables have been assigned, we can get some pruning by making the constraints GAC consistent.

 - Checking for consistency can be done as a pre-processing step, or it can be directly integrated into a search algorithm.

 - If we apply arc consistency propagation during search the search tree’s size will typically be much reduced in size.

 - **Note:** GAC enforce does NOT find a solution! (why?) To find a solution we must use do search while enforcing GAC.

Answer a question! http://etc.ch/ekXi
\(X = \{a_1, a_2, a_3\} \)

\[C(X, Y) \]

\[\begin{array}{ccc}
T & a_1 & b_1 \\
T & a_2 & b_2 \\
T & a_3 & b_3 \\
\end{array} \]

\(Y = \{b_1, b_2, b_3\} \)

\[C(Y, Y) \]

\[\begin{array}{ccc}
T & a_1 & b_1 \\
T & a_2 & b_2 \\
T & a_3 & b_3 \\
\end{array} \]
def GAC_Enforce()
// GAC-Queue contains all constraints one of whose variables has
// had its domain reduced. At the root of the search tree we can
// first run GAC_Enforce with all constraints on GAC-Queue
1. while GACQueue not empty
2. C = GACQueue.extract()
3. for V := each member of scope(C)
4. for d := CurDom[V]
5. Find an assignment A for all other variables in scope(C)
 such that C(A U V=d) is True
6. if A not found
7. CurDom[V] = CurDom[V] - d # remove d from the domain of V
8. if CurDom[V] == {} # DWO for V
9. empty GACQueue
10. return DWO # return immediately
11. else
12. push all constraints C’ such that V ∈ scope(C’)
 and C’ ∉ GACQueue on to GACQueue
13. return TRUE # loop exited without DWO
def GAC(Level)
1. if all Variables assigned
2. PRINT Value of each Variable
3. EXIT or RETURN # EXIT for only one solution
 # RETURN for more solutions
4. V := PickUnassignedVariable()
5. Assigned[V] := TRUE
6. for d := each member of CurDom(V)
7. Value[V] := d
8. Prune all values other than d from CurDom[V]
9. for each constraint C whose scope contains V
10. Put C on GACQueue
11. if(GAC_Enforce() != DWO)
12. GAC(Level+1) # all constraints were ok
13. RestoreAllValuesPrunedByFCCheck() # GAC
14. Assigned[V] := FALSE # UNDO as we have tried all of V’s values
15. RETURN
When all constraints are GAC three outcomes are possible:

1. Each domain has a single value.

2. At least one domain is empty.

3. Some domains have more than one value.
 Need to solve this new CSP (usually) simpler problem: same constraints, domains have been reduced
GAC: Complexity

• **BT worst-case running time:** $O(d^N)$, where d is the max size of a variable domain, and N is the number of variables.

• **Worst-case time complexity** of arc consistency procedure on a problem with N variables, c binary constraints, and d be the max size of a variable domain:

 – How often will we prune the domain of variable V? $O(d)$

 – How many constraints will be put on the queue when pruning domain of a variable V? $O(\deg(V))$

 – Sum of degrees of all variables: $2 \cdot c$

 – Overall, how many constraints will be put on the queue? cd

 – Checking consistency of each constraint:

 – Overall Time Complexity:
More readings:

A **support** for a value assignment $V = d$ in a constraint C is an **assignment** A to all of the other variables in $\text{scope}(C)$ s.t. $A \cup \{V = d\}$ satisfies C.

A constraint C is **GAC** if for every variable V_i in its scope, every value $d_i \in CurDomain(V_i)$ has a **support** in C.
• Smarter implementations keep track of \textbf{supports} to avoid having to search though all possible assignments to the other variables for a satisfying assignment.

• Rather than search for a satisfying assignment to C containing $V = d$, they check if the \textbf{current support} is \textbf{still valid}.

• Also they take advantage that a support for $V = d$, e.g. $\{V = d, X = a, Y = b, Z = c\}$ is also a support for $X = a, Y = b, \text{ and } Z = c$.

• Another key development in practice is that for some constraints this computation can be done in polynomial time.
 \textbf{Example:} Ideas from graph matching theory are used to find support for variables in $All - diff(V_1, .., V_n)$ in polynomial time.

The special purpose algorithms for achieving GAC on particular types of constraints are very important in practice.
(a) $\text{Dom}[X] = \{1, 2, 3, 4\}$
(b) $\text{Dom}[Y] = \{1, 2, 3, 4\}$
(c) $\text{Dom}[Z] = \{1, 2, 3, 4\}$
(d) $\text{Dom}[W] = \{1, 2, 3, 4, 5\}$

And 3 constraints:

(a) $C_1(X, Y, Z)$ which is satisfied only when $X = Y + Z$
(b) $C_2(X, W)$ which is satisfied only when $W > X$
(c) $C_3(X, Y, Z, W)$ which is satisfied only when $W = X + Z + Y$

C_1: $x = 3, 4, 5$ $y = z = 3, 4, 5$
C_2: $w = 3, 4, 5$
C_3: $w = 3, 4, 5$ $x = 3, 4, 5$ $y, z = 3, 4, 5$

C_1: no prunes
C_2: ""
C1(V1,V2,V3)

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
<th>V3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

C2(V1,V3,V4,V5)

<table>
<thead>
<tr>
<th>V1</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

C3(V2,V3,V5)

<table>
<thead>
<tr>
<th>V2</th>
<th>V3</th>
<th>V5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>

Dom[V1]...Dom[V5] = \{a, b, c\}