CSC384
Constraint Satisfaction Problems
Part 2

Bahar Aameri & Sonya Allin

Summer 2020
Problems with Plain Backtracking

The backtracking search won’t detect that the (3,3) cell has no possible value until all variables of the row/column/sub-square are assigned.

The backtracking search won’t detect that the (3,3) cell has no possible value until all variables of the row/column/sub-square are assigned.
In CSPs, there might be variables that have no possible value, but BT doesn’t detect this until it tries to assign them a value. This leads to the idea of Constraint Propagation (or Domain Filtering).

Constraint Propagation: "looking ahead" at the yet unassigned variables in the search, trying to detect obvious failures. "Obvious" means things we can test/detect efficiently.

- Even if it doesn’t detect an obvious failure, it might be possible to eliminate some parts of the future search.
Constraint Propagation

- Propagation has to be applied **during the search**; potentially at **every node** of the search tree.

- Propagation itself is an inference step that needs some resources (in particular, **time**). If propagation is slow, this can slow the search down to the point where using propagation makes finding a solution take longer!

- Two main types of propagation: **Forward Checking** and **Generalized Arc Consistency**.
Forward Checking: An extension of backtracking search. Employs a modest amount of propagation (look ahead).

Intuition: When instantiating a variable V, do the following for all constraints C that have only one uninstantiated variable X remaining:

- Check all the values of X;
- Prune those values that violate C.

Undo the pruning when backtrack.
Each of Q_1, \ldots, Q_4 denotes a queen per row.
Forward checking prunes domains of Q_1, \ldots, Q_4 based on binary constraints over Q_1, \ldots, Q_4.

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & & & \\
2 & & & \\
3 & & & \\
4 & & & \\
\end{array}
\]
Q₁ = 1
Q₂ = 3

Q₃ post FC?

Answer a Question! http://etc.ch/xyX3
Q1 \{1,2,3,4\}
Q2 \{3\}
Q3 \{1,1,1,1\}
Q4 \{2,3,\}

DWO!
Q₁ = 1
Q₂ = 4

* Remember the pruned vals in case we back track
\[Q_1 = 1 \]

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
Q1 & \{1,2,3,4\} & Q2 & \{\ ,\ ,\ ,4\} \\
Q3 & \{\ ,2,\ ,\} & Q4 & \{\ ,\ ,3,\} \\
\end{array}
\]
The diagram on the left shows a grid with stars and an 'X' at specific positions. The grid is labeled from 1 to 4 on both the rows and columns.

The diagram on the right consists of four nodes labeled Q1, Q2, Q3, and Q4. Each node contains a set of values:
- Q1: \{1, 2, 3, 4\}
- Q2: \{, , , 4\}
- Q3: \{, 2, , \}
- Q4: \{, , 3, \}

A red circle is drawn around Q1, and the text "DWO!" is written on the diagram.
\[Q_{2} = 2 \]

\[Q_{2} : P \]
Sol'n
def FCCheck(C,X):
 // C is a constraint with all its variables already
 // assigned, except for variable X.
 1. for d := each member of CurDom(X):
 2. if making X = d together with previous assignments
 to variables in the scope of C falsifies C:
 remove d from CurDom(X)
 3. if CurDom[X] == {}:
 4. RETURN DWO # Domain Wipe Out
 5. RETURN ok
Forward Checking: The Algorithm

```python
def FC(Level):
1. if all Variables assigned
2. PRINT Value of each Variable
3. EXIT or RETURN # EXIT for only one solution
   # RETURN for more solutions
4. V := PickUnassignedVariable()
5. Assigned[V] := TRUE
6. for d := each member of CurDom(V)
7.     Value[V] := d
8.     DWOoccured:= False
9.     for each constraint C over V such that C has only one
      unassigned variable X in its scope:
10.    if FCCheck(C,X) == DWO: # X domain becomes empty
11.       DWOoccurred:= True
12.     BREAK # stop checking constraints
13.     if NOT DWOoccured: # all constraints were ok
14.        FC(Level+1)
15.     RestoreAllValuesPrunedByFCCheck() # book-keeping
16.     Assigned[V] := FALSE # UNDO as we have tried all of V’s values
17. RETURN
```
Forward Checking: Restoring Values

• After we **backtrack** from the current assignment the values that were pruned (as a result of that assignment) must be **restored**.

 requires...book-keeping!!

• Some **bookkeeping** needs to be done to remember which values were pruned by which assignment.
BT Search
Answer a Question! http://etc.ch/xyX3
The general class of CSPs are **NP-complete**. That is, their worst-case running time is **exponential**.

BT worst-case running time: $O(d^N)$, where d is the max size of a variable domain, and N is the number of variables.

But, typically, every NP-complete family contains large **sub-classes** of simpler problems.

The purpose of developing constraint propagation techniques, such as FC, is to solve those **simpler sub-classes** faster.

FC **often** is about **100 times faster** than BT, but it can also do worse!

More on this:
Variable and Value Ordering Heuristics: Human Analogy

What variables would you try first?

```
+---+---+---+---+---+---+---+---+
|   |   |   | E1 |   |   | G |   |
+---+---+---+---+---+---+---+---+
| 8 | 1 | 5 | 6 | E3 |   | 4 |   |
+---+---+---+---+---+---+---+---+
| 6 |   |   | 7 | 5 | 8 |   |   |
+---+---+---+---+---+---+---+---+
| 9 |   |   |   | 4 | 1 | 7 |   |
+---+---+---+---+---+---+---+---+
| 4 |   |   |   |   |   | 2 |   |
+---+---+---+---+---+---+---+---+
| 6 | 2 | 3 |   |   |   | 8 |   |
+---+---+---+---+---+---+---+---+
| 5 |   | 9 | 1 |   |   | 6 |   |
+---+---+---+---+---+---+---+---+
| 1 |   |   | E3 | 7 | 8 | 9 | 5 |
+---+---+---+---+---+---+---+---+
```

Answer a Question! http://etc.ch/xyX3

\[E_{11} = \overline{325} \neq \frac{E_9 = 32,63}{} \]
Variable and Value Ordering Heuristics

• Heuristics can be used to determine

 – the order in which variables are assigned: PickUnassignedVariable()

 – the order of values tried for each variable.

• The choice of the next variable can vary from branch to branch.
 Example: Under the assignment $V_1 = a$ we might choose to assign V_4 next, while under $V_1 = b$ we might choose to assign V_5 next.

• This dynamically chosen variable ordering has a tremendous impact on performance.
Variable and Value Ordering Heuristics

Degree Heuristic: Select the variable that is involved in the largest number of constraints on other unassigned variables.

Minimum Remaining Values Heuristics (MRV):

- Always branch on a variable with the smallest remaining values (smallest CurDom).

 Intuition: If a variable has only one value left, that value is forced, so we should propagate its consequences immediately.

- This heuristic tends to produce skinny trees at the top. More variables can be instantiated with fewer nodes searched.

- More constraint propagation/DWO failures occur when the tree starts to branch out. Hence, inconsistencies can be found much faster.
Problem Statement: Color the following map using red, green, and blue such that adjacent regions have different colors.
Problem formulation:

- Variables: NT, WA, SA, \ldots etc.
- Domains: r, s, b
- Constraints: $wa \neq NT, \ wa \neq SA, \ Q \neq SA$
 $NT \neq SA, \ etc. \ constant$

Graph
Degree Heuristic selects
\{SA = \textit{red}\} \text{ (using Degree Heuristic)}

Answer a Question! http://etc.ch/xyX3
\{SA = \text{red}, NT = \text{blue}\}$ (using MRV and Degree Heuristics results in a tie between NT, Q, and NSW. We choose NT).
• \{SA = \text{red}, NT = \text{blue}, Q = \text{green}\} \text{ (using MRV and Degree Heuristic)}
• \(\{SA = \text{red}, NT = \text{blue}, Q = \text{green}, NWS = \text{blue}\}\) (using MRV and Degree Heuristic)
\{SA = \text{red}, NT = \text{blue}, Q = \text{green}, NWS = \text{blue}, V = \text{green}, WA = \text{green}, T = \text{green}\}
Example: Map Colouring

Variables, Values, Constraints

\[r = b \]

\[s = r \]

\[s = r \]

\[n = g \]

\[v = b \]

\[W = b \]
MRV: min. remaining values

PH: Pick Var.

LCV: least constraining value

Pick Val

Dom A = \{1, 5, 6\}

Dom B = \{5, 6\}

Dom C = \{5, 6\}

r is the least constraining value
FC and MRV: Empirically

• FC often is about 100 times faster than BT.

• FC with MRV (Minimal Remaining Values) often 10000 times faster.

• On some problems the speed up can be much greater. Converts problems that are not solvable to problems that are solvable.

• Still FC is not that powerful. Other more powerful forms of constraint propagation are used in practice.