CSP slides are drawn from or inspired by a multitude of sources including:

Alan Mackworth
Faheim Bacchus
Sheila McIlraith
Andrew Moore
Hojjat Ghaderi
Craig Boutillier
Constraint Satisfaction Problems (CSPs)

• Chapter 6

 – 6.1: Formalism

 – 6.2: Constraint Propagation

 – 6.3: Backtracking Search for CSP

 – 6.4 is about local search which is a very useful idea but we won’t cover it in class.

Also see Poole and Mackworth chapter 4: https://artint.info/2e/html/ArtInt2e.Ch4.html
• **Uninformed search problems**

 – use *problem-specific* state representations and heuristics;

 – are generally concerned about determining *paths* from the current state to goal states;

 – view states as black boxes with *no internal structures*.

• **Constraint Satisfaction Problems (CSPs)**

 – care less about paths and more about final (goal) *configurations*;

 – take advantage of a *general state representation*.

 – the uniform state representation allows design of *more efficient algorithms*.

• Techniques for solving CSPs have many practical applications in industry.
Constraint Satisfaction Problems (CSPs) – Intuition

- **Represent states** as vectors of feature values.¹
 - A set of *k* variables (known as **features**).
 - Each variable has a domain of different values.
 - A **state** is specified by an assignment of values to **all** variables.
 - A **partial state** is specified by an assignment of a value to **some** of the variables.

- **A goal** is specified as **conditions** on the vector of feature values.

- **Solving a CSP**: find a set of values for the features (**variables**) so that the values **satisfy** the specified conditions (**constraints**).

¹ Feature vectors provide a general state representation that is useful in many other areas of AI, particularly Machine Learning, Reasoning under Uncertainty, and Computer Vision.
Example: Sudoku

* 8:13 come back *

```
<table>
<thead>
<tr>
<th>2</th>
<th>·</th>
<th>·</th>
<th>·</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>6</th>
<th>4</th>
<th>3</th>
<th>7</th>
<th>9</th>
<th>5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>9</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>
```
Example: Sudoku

- Each **variable** represent a cell.

- **Domain**: a **single value** for cells already filled in; the set \(\{1, \ldots, 9\} \) for empty cells.

- **State**: any completed board given by specifying the value in each cell.

- **Partial State**: some incomplete filling out of the board.

- **Constraints**: The variables that form

 - a column must be distinct; ⚫

 - a row must be distinct; ⚫

 - a sub-square must be distinct. ⚫
A CSP consists of

- A set of variables $V_1, ..., V_n$;
- A (finite) domain of possible values $\text{Dom}[V_i]$ for each variable V_i;
- A set of constraints $C_1, ..., C_m$.

- Each variable V_i can be assigned any value from its domain:

 $$V_i = d \quad \text{where} \quad d \in \text{Dom}[V_i]$$

- Each constraint C has a set of variables it operates over, called its scope.

 Example: The scope of $C(V_1, V_2, V_4)$ is $\{V_1, V_2, V_4\}$

 - Given an assignment to variables the C returns **True** if the assignment satisfies the constraint;
 - **False** if the assignment falsifies the constraint.
• **Solution** to a CSP: An assignment of a value to all of the variables such that every constraint is satisfied.

• A CSP is **unsatisfiable** if no solution exists.
Types of Constraints

• **Unary** Constraints (over one variable)
 \[C(X) : X = 2; \]
 \[C(Y) : Y > 5 \]

• **Binary** Constraints (over two variables)
 \[C(X, Y) : X + Y < 6 \]

• **Higher-order** constraints: over 3 or more variables.
 \[ALL−Diff(V_1, .., V_n): V_1 \neq V_2, V_1 \neq V_3, ..., V_2 \neq V_1, ..., V_n \neq V_1, ..., V_n \neq V_{n-1}. \]

Answer a Question! http://etc.ch/xyX3

\(^2\) Later, we will see that this collection of binary constraints has less pruning power than \(ALL−Diff\), so \(ALL−Diff\) appears in many CSP problems.
Constraint Table

• We can specify the constraints with a table

\[C(1, 1, 2) = \text{False} \]

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
<th>V4</th>
<th>C(V1, V2, V4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>False</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>False</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>False</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>False</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>True</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>False</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>False</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>False</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>False</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>True</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>True</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>False</td>
</tr>
</tbody>
</table>

• Often we can specify the constraint more compactly with an expression.

\[V2 > 1 \]
Example: Sudoku

- **Variables:** $V_{11}, V_{12}, ..., V_{21}, V_{22}, ..., V_{91}, ..., V_{99}$

- **Domains:** $Dom[V_{ij}] = \{1, 2, ..., 9\}$ for empty cells

 $Dom[V_{ij}] = \{k\}$, where k is a fixed value, for filled cells.
Example: Sudoku

- **Constraints:**
 - Row constraints:
 - $\text{All} - \text{Diff}(V_{11}, V_{12}, V_{13}, ..., V_{19})$
 - $\text{All} - \text{Diff}(V_{21}, V_{22}, V_{23}, ..., V_{29})$
 - ...
 - $\text{All} - \text{Diff}(V_{91}, V_{12}, V_{13}, ..., V_{99})$

\[
\begin{array}{cccccccccc}
1 & 2 & 6 & 4 & 3 & 7 & 9 & 5 & 8 \\
8 & 9 & 5 & 6 & 2 & 1 & 4 & 7 & 3 \\
3 & 7 & 4 & 9 & 8 & 5 & 1 & 2 & 6 \\
4 & 5 & 7 & 1 & 9 & 3 & 8 & 6 & 2 \\
9 & 8 & 3 & 2 & 4 & 6 & 5 & 1 & 7 \\
6 & 1 & 2 & 5 & 7 & 8 & 3 & 9 & 4 \\
2 & 6 & 9 & 3 & 1 & 4 & 7 & 8 & 5 \\
5 & 4 & 8 & 7 & 6 & 9 & 2 & 3 & 1 \\
7 & 3 & 1 & 8 & 5 & 2 & 6 & 4 & 9
\end{array}
\]
Example: Sudoku

• **Constraints:**

 - **Row constraints:**

 \[
 \text{All} - \text{Diff}(V_{11}, V_{12}, V_{13}, \ldots, V_{19})
 \]

 \[
 \text{All} - \text{Diff}(V_{21}, V_{22}, V_{23}, \ldots, V_{29})
 \]

 \[
 \ldots
 \]

 \[
 \text{All} - \text{Diff}(V_{91}, V_{12}, V_{13}, \ldots, V_{99})
 \]

 - **Column Constraints:**

 \[
 \text{All} - \text{Diff}(V_{11}, V_{21}, V_{31}, \ldots, V_{91})
 \]

 \[
 \text{All} - \text{Diff}(V_{12}, V_{22}, V_{32}, \ldots, V_{92})
 \]

 \[
 \ldots
 \]

 \[
 \text{All} - \text{Diff}(V_{19}, V_{29}, V_{39}, \ldots, V_{99})
 \]
Example: Sudoku

- **Constraints:**

 - **Row constraints:**
 \[\text{All} - \text{Diff}(V_{11}, V_{12}, V_{13}, ..., V_{19}) \]
 \[\text{All} - \text{Diff}(V_{21}, V_{22}, V_{23}, ..., V_{29}) \]
 ...
 \[\text{All} - \text{Diff}(V_{91}, V_{12}, V_{13}, ..., V_{99}) \]

 - **Column Constraints:**
 \[\text{All} - \text{Diff}(V_{11}, V_{21}, V_{31}, ..., V_{91}) \]
 \[\text{All} - \text{Diff}(V_{12}, V_{22}, V_{32}, ..., V_{92}) \]
 ...
 \[\text{All} - \text{Diff}(V_{19}, V_{29}, V_{39}, ..., V_{99}) \]

 - **Sub-Square Constraints:**
 \[\text{All} - \text{Diff}(V_{11}, V_{12}, V_{13}, V_{21}, V_{22}, V_{23}, V_{31}, V_{32}, V_{33}) \]
 ...
 \[\text{All} - \text{Diff}(V_{77}, V_{78}, V_{79}, ..., V_{97}, V_{98}, V_{99}) \]
Problem Statement: Place N Queens on an $N \times N$ chess board so that no Queen can attack any other Queen.
Example: N-Queens

Problem formulation:

- Variables:
 \[Q_1, Q_2, Q_3, \ldots, Q_n \]

- Domains:
 \[\{1, 2, 3, 4, \ldots, N\} \]

\[Q_i = N \text{-N possible value assignments} \]

\[Q_2 = N \text{-N} \]

\# of configurations is \((N \cdot N)^N\)

Answer a Question! http://etc.ch/xyX3
Is there a better way to represent the N-queens problem? We know we cannot place two queens in a single row.

Problem Statement: Place N Queens on an $N \times N$ chess board so that no Queen can attack any other Queen.

Better Formulation:

- **Variables:**

- **Domains:**

Answer a Question! http://etc.ch/xyX3
Example: N-Queens
Example: N-Queens

Constraints:

• Cannot put two Queens in same column:

 \[Q_i \neq Q_j \]

• Diagonal constraints:

 \[|Q_i - Q_j| \neq |i - j| \]
A CSP could be formulated as a search problem:

- **Initial State**: Empty assignment.
- **Successor Function**: Assigned values to an unassigned variable.
- **Goal Test**:
 1. The assignment is complete
 2. No constraints is violated.
CSP Backtracking Search - Intuition

CSPs do NOT require finding a path (to a goal). They only need the configuration of the goal state.
CSPs are best solved by a specialized version search called Backtracking Search.

Key Intuitions:

• Searching through the space of partial assignments, rather than paths.

• Decide on a suitable value for one variable at a time. Order in which we assign the variables does not matter.

• If a constraint is falsified during the process of partial assignment, immediately reject the current partial assignment.
CSP Search Tree:

- **Root**: Empty Assignment.
- **Children** of a node: all possible value assignments for a particular unassigned variable.
- The tree **stops descending** if an assignment violates a constraint.
- **Goal Node**:
 1. The assignment is complete
 2. No constraints is violated.
Draw a CSP search tree for Sudoku
Example: 4-Queens

Draw the CSP search tree for 4-Queens.
We will apply a **recursive** implementation:

- If **all** variables are set, print the solution and **terminate**.
- Otherwise:
 - Pick an unassigned variable \(V \) and **assign** it a value.
 - **Test** the constraints **corresponding** with \(V \) and **all other variables** of them are assigned.
 - If a constraint is **unsatisfied**, return (**backtrack**).
 - Otherwise, go one level deeper by invoking a **recursive call**.
def BT(Level):
1. if all Variables assigned
2. PRINT Value of each Variable
3. EXIT or RETURN # EXIT for only one solution
 # RETURN for more solutions
4. V := PickUnassignedVariable()
5. Assigned[V] := TRUE
6. for d := each member of Domain(V) # the domain values of V
7. Value[V] := d
8. ConstraintsOK := TRUE
9. for each constraint C such that (i) V is a variable of C and
 (ii) all other variables of C are assigned:
10. if C is not satisfied by the set of current assignments:
11. ConstraintsOK := FALSE
12. if ConstraintsOK == TRUE:
13. BT(Level+1)
14. Assigned[V] := FALSE # UNDO as we have tried all of V’s values
15. RETURN

Answer a Question! http://etc.ch/xyX3