CSC384 Constraint Satisfaction Problems Part 1

Bahar Aameri & Sonya Allin

Summer 2020

CSP slides are drawn from or inspired by a multitude of sources including :

Alan Mackworth Faheim Bacchus Sheila McIlraith Andrew Moore Hojjat Ghaderi Craig Boutillier

Constraint Satisfaction Problems (CSPs)

- Chapter 6
 - 6.1: Formalism
 - 6.2: Constraint Propagation
 - 6.3: Backtracking Search for CSP
 - 6.4 is about local search which is a very useful idea but we won't cover it in class.

Also see Poole and Mackworth chapter 4: https://artint.info/2e/html/ArtInt2e.Ch4.html

Constraint Satisfaction Problems (CSPs) – Introduction

- Uninformed search problems
 - use problem-specific state representations and heuristics;
 - are generally concerned about determining paths from the current state to goal states;
 - view states as black boxes with no internal structures.
- Constraint Satisfaction Problems (CSPs)
 - care less about paths and more about final (goal) configurations;
 - take advantage of a general state representation.
 - the uniform state representation allows design of more efficient algorithms.
- Techniques for solving CSPs have many practical applications in industry.

Constraint Satisfaction Problems (CSPs) – Intuition

- Represent states as vectors of feature values.¹
 - 4.5:((20)84 (22522) - A set of k variables (known as features).

 - A state is specified by an assignment of values to all variables.
 - A partial state is specified by an assignment of a value to some of the variables.
- A **goal** is specified as **conditions** on the vector of feature values.

Solving a CSP: find a set of values for the features (variables) so that the values satisfy the specified conditions (constraints).

¹Feature vectors provide a general state representation that is useful in many other areas of AI, particularly Machine Learning, Reasoning under Uncertainty, and Computer Vision.

+11 cs 2(9 = 1

* 8:13 rome back *																				
•	2	•	•	•						ļ	1	2	6	4	3	7	9	5	8	D
			6					3			8	9	5	6	2	1	4	7	3	
	7	4		8							3	7	4	9	8	5	1	2	6	
4					3			2			4	5	7	1	9	3	8	6	2	
	8			4			1				9	8	3	2	4	6	5	1	7	
6			5		J						6	1	2	5	7	8	3	9	4	
				1		7	8				2	6	9	3	1	4	7	8	5	
5					9						5	4	8	7	6	9	2	3	1	
							4				7	3	1	8	5	2	6	4	9	

• Each variable represent a cell.

C,1 (1. (1.)

- Domain: a single value for cells already filled in; the set $\{1, ..., 9\}$ for empty cells.
- State: any completed board given by specifying the value in each cell.
 - 7
- Partial State: some incomplete filling out of the board.
- · Constrains: The variables that form
 - a column must be distinct; 👗
 - a row must be distinct; 🌲
 - a sub-square must be distinct. 🌲

Formalization of a CSP

• A CSP is unsatisfiable if no solution exists.

Types of Constraints

- Unary Constraints (over one variable) C(X): X = 2;C(Y): Y > 5
- **Binary** Constraints (over two variables)
 - C(X,Y):X+Y<6
- Higher-order constraints: over 3 or more variables.
- $ALL Diff(V_1, ..., V_n): V_1 \neq V_2, V_1 \neq V_3, ..., V_2 \neq V_1, ..., V_n \neq V_1, ..., V_n \neq V_{n-1}.^2$

Answer a Question! http://etc.ch/xyX3

² Later, we will see that this collection of binary constraints has less pruning power than ALL - Diff, so ALL - Diff appears in many CSP problems.

Constraint Table

- We can specify the constraints with a table

	V1	V2	V4	C(V1,V2,V4)	- T. F
	1	1	1	False	
(1	1	2	False	-
	1	2		False	
	1	2	2	False	
	2	1	1	True	
	2	1	2	False	
	2	2	1	False	
	2	2	2	False	
	3	1	1	False	
	3	1	2	True	
	3	2	1	True	
	3	2	2	False	

Often we can specify the constraint more compactly with an expression. •

<u>nx</u>

- Constraints:
- Row constraints: $All - Diff(V_{11}, V_{12}, V_{13}, ..., V_{19})$ $All - Diff(V_{21}, V_{22}, V_{23}, ..., V_{29})$... $All - Diff(V_{91}, V_{12}, V_{13}, ..., V_{99})$

$$\begin{cases} V_{11} \neq V_{12} & \frac{7 + 3 + 3}{7 + 3 + 1} \\ V_{12} \neq V_{13} & V_{13} + V_{13} \\ V_{13} \neq V_{13} + V_{13} & V_{13} \neq V_{13} \end{cases}$$

795

8

5

3 9 4

8

6

6 2

1 7

8 5

3 1

6 4

9

2

8

9 3

7 8

76

9

2

5

2 6

8 3 2 4 6

6 9 3 1 4 7

4 5

9

6 1

269

4

7

2

Constraints:

- Row constraints:

$$All - Diff(V_{11}, V_{12}, V_{13}, ..., V_{19})$$

 $All - Diff(V_{21}, V_{22}, V_{23}, ..., V_{29})$
...
 $All - Diff(V_{91}, V_{12}, V_{13}, ..., V_{99})$

- Column Constraints:

$$All - Diff(V_{11}, V_{21}, V_{31}, ..., V_{91})$$

 $All - Diff(V_{12}, V_{22}, V_{32}, ..., V_{92})$
...
 $All - Diff(V_{19}, V_{29}, V_{39}, ..., V_{99})$

8 9 5 6 2 1 4 3 7 4 9 8 5 1 4 5 7 1 9 3 8 9 8 3 2 4 6 5	2	3 6
4 5 7 1 9 3 8	2	6
4 5 7 1 9 3 8	-	
0 0 2 2 4 6 5	6	2
9032405	1	7
6 1 2 5 7 8 3	9	4
2 6 9 3 1 4 7	8	5
5 4 8 7 6 9 2	3	1
7 3 1 8 5 2 6	4	9

· Constraints:

- Row constraints:

$$All - Diff(V_{11}, V_{12}, V_{13}, ..., V_{19})$$

 $All - Diff(V_{21}, V_{22}, V_{23}, ..., V_{29})$
...
 $All - Diff(V_{91}, V_{12}, V_{13}, ..., V_{99})$

- Column Constraints: $All - Diff(V_{11}, V_{21}, V_{31}, ..., V_{91})$ $All - Diff(V_{12}, V_{22}, V_{32}, ..., V_{92})$... $All - Diff(V_{19}, V_{29}, V_{39}, ..., V_{99})$

- Sub-Square Constraints: $All-Diff(V_{11}, V_{12}, V_{13}, V_{21}, V_{22}, V_{23}, V_{31}, V_{32}, V_{33}),$..., $All-Diff(V_{77}, V_{78}, V_{79}, ..., V_{97}, V_{98}, V_{99})$

1		2	6	4	3	7	9	5	8
8	3	9	5	6	2	1	4	7	3
3		7	4	9	8	5	1	2	6
4		5	7	1	9	3	8	6	2
g)	8	3	2	4	6	5	1	7
6	;	1	2	5	7	8	3	9	4
2	2	6	9	3	1	4	7	8	5
5		4	8	7	6	9	2	3	1
7	'	3	1	8	5	2	6	4	9

Example: N-Queens

Problem Statement: Place N Queens on an $N \times N$ chess board so that no Queen can attack any other Queen.

Answer a Question! http://etc.ch/xyX3

Is there a better way to represent the N-queens problem? We know we cannot place two queens in a single row.

Example: N-Queens

Example: N-Queens

A CSP could be formulated as a search problem:

- Initial State: Empty assignment.
- Successor Function: Assigned values to an unassigned variable.
- Goal Test: (1) The assignment is complete (2) No constraints is violated.

CSPs do NOT require finding a path (to a goal). They only need the **configuration** of the goal state.

CSPs are best solved by a specialized version search called **Backtracking Search**.

Key Intuitions:

- Searching through the space of partial assignments, rather than paths.
- Decide on a suitable value for one variable at a time.
 Order in which we assign the variables does not matter.
- If a constraint is falsified during the process of partial assignment, immediately reject the current partial assignment.

CSP Search Tree:

- Root: Empty Assignment.
- Children of a node: all possible value assignments for a particular unassigned variable.
- The tree stops descending if an assignment violates a constraint.
- Goal Node:
 (1) The assignment is complete
 (2) No constraints is violated.

Draw a CSP search tree for Sudoku

Answer a Question! http://etc.ch/xyX3

Draw the CSP search tree for 4-Queens.

We will apply a recursive implementation:

- If all variables are set, print the solution and terminate.
- Otherwise:
 - Pick an unassigned variable V and assign it a value.
 - Test the constraints corresponding with V and all other variables of them are assigned.
 - If a constraint is unsatisfied, return (backtrack).
 - Otherwise, go one level deeper by invoking a recursive call.

Backtracking Search: The Algorithm

```
def BT(Level):
1. if all Variables assigned
2.
      PRINT Value of each Variable
   EXIT or RETURN
3.
                                        # EXIT for only one solution
                                        # RETURN for more solutions
   V := PickUnassignedVariable()
4.
5.
    Assigned[V] := TRUE
6.
    for d := each member of Domain(V) # the domain values of V
7.
      Value[V] := d
8.
   ConstraintsOK := TRUE
9.
      for each constraint C such that (i) V is a variable of C and
                                       (ii) all other variables of C are assigned:
10.
            if C is not satisfied by the set of current assignments:
11.
                    ConstraintsOK := FALSE
12.
     if ConstraintsOk == TRUE:
13.
           BT(Level+1)
14.
     Assigned[V] := FALSE  # UNDO as we have tried all of V's values
15.
     RETURN
```

Answer a Question! http://etc.ch/xyX3