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Inference	in	Bayes	Nets	via	Sampling

• If	the	Bayes	net	is	too	complex	to	do	Variable	
Elimination	on,	or	we	want	to	answer	queries	that	VE	
can’t	easily	model.

• The	Bayes	net	defines	a	joint	distribution	
P(X1,	X2,	…,	Xn)	over	its	features.

• Idea	is	to	draw	atomic	events	from	this	distribution	in	
such	a	way	that	the	probability	we	obtain	the	atomic	
event
<X1=d1,	X2=d2,	…,	Xn=dn>	is	exactly	
P(X1=d1,	X2=d2,	…,	Xn=dn)		
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Inference	in	Bayes	Nets	via	Sampling

• Then	if	we	collect	a	set	of	m	samples	
<X1=d11,	X2=d12,	…,	Xn=d1n>
<X1=d21,	X2=d32,	…,	Xn=d2n>
<X1=d31,	X2=d32,	…,	Xn=d3n>
<X1=d41,	X2=d42,	…,	Xn=d4n>
<X1=d51,	X2=d52,	…,	Xn=d5n>
<X1=d61,	X2=d62,	…,	Xn=d6n>
…
<X1=dm1,	X2=dm2,	…,	Xn=dmn>
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Inference	in	Bayes	Nets	via	Sampling

• We	can	estimate	many	different	probabilities	by	looking	
that	the	frequency	among	the	m	samples.

• e.g.	to	estimate	P(X1=a)	we	count	how	many	samples	
have	X1=a	and	divide	by	m

• to	estimate	P(X1=a	\/	X2	=	b)	we	count	how	many	
samples	have	X1=a	or	X2=b	and	divide	by	m.

• Notice	that	the	2nd query	can’t	easily	be	answered	with	
VE,	even	if	we	had	the	computational	resources	to	do	so.	
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Sampling	from	a	distribution

• In	python	random.uniform(0.0,	1.0)	generates	a	random	
number	in	the	range	[0.0,	1.0]	with	each	number	
approximately	equally	likely	to	be	generated.

• Sampling	in	Bayes	Nets	requires	sampling	from	a	
distribution	over	a	variable.	This	is	accomplished	by	
mapping	the	probabilities	to	equal	sized	ranges	of	the	
[0,1]	interval.	Then	selecting	the	variable’s	value	based	
on	which	range	the	uniform	random	number	lies	in.
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Sampling	from	a	distribution

• E.g.,	say	we	have	P(A|B=t,	C=t)	=	[0.1,	0.3,	0.4,	0.2]
That	is	the	probability	that	A	(given	B=t,	C=t)	gets	is	first	value	
is	0.1,	the	probability	it	gets	it	second	value	is	0.3,	etc.

• We	break	the	unit	interval	into	4	segments,	the	first	being	0.1	
long,	the	second	begin	0.3	long,	etc.

0.1 0.4 0.8

0.1 0.3 0.4 0.2
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Sampling	from	a	distribution

• We	generate	a	uniformly	distributed	random	number	in	
the	range	0.0—1.0,	and	if	that	number	falls	into	the	first	
range	we	set	A	to	its	first	value,	if	it	falls	into	the	second	
range	we	set	A	to	its	second	value,	etc.	
• The	boundary	value	(0.1,	0.4,	0.7	in	our	example)	is	considered	to	
lie	in	the	right	range,	so	if	the	random	number	is	0.1	we	set	A	to	its	
second	value,	if	it	is	0.4	we	set	A	to	its	third	value	etc.

0.1 0.4 0.8

0.1 0.3 0.4 0.2
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Sampling	from	a	distribution

• E.g.,	the	following	uniform	random	numbers
0.1,	0.827,	0.326,	0.865,	0.775
generates	the	following	random	settings	of	the	
variable	A

2nd value	of	A,	4th value	of	A,	2nd value	of	A,	4th value	
of	A,	3rd	value	of	A.

0.1 0.4 0.8

0.1 0.3 0.4 0.2
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Prior	Sampling---Generating	Samples	from	a	Bayes	net

• Start	at	the	roots	of	the	Bayes	nets	(i.e.,	those	variables	
that	have	no	parents)

• Randomly	select	a	value	for	each	of	these	variables	from	
the	distribution	given	by	the	variables	CPT.

• Work	your	way	down	the	net,	when	you	have	a	value	for	
all	of	a	variable	X’s	parents	randomly	select	a	value	for	X	
using	the	distribution	P(X|par(X)).	This	distribution	is	in	
X’s	CPT	and	all	of	the	variables	in	par(X)	have	already	
been	set	by	the	previous	steps.	

• When	all	variables	have	a	value---you	get	one	sample.
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Example

Cloudy

RainSprinkler

 Wet
Grass

C
T
F
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P(R|C)C
T
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P(S|C)

S R
T T
T F
F T
F F

.90

.90

.99
P(W|S,R)

P(C)
.50

.01

4

Sample	a	value	from	C	from	
distribution	[0.5,	0.5]

Say	C	=	T	is	sampled.
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Example

Cloudy

RainSprinkler

 Wet
Grass
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P(C)
.50

.01

4

Now	sample	
a	value	for	S	
from	the	
distribution	
P(S|C=T)	=	
[0.1,	0.9]

Say	we	sample	
S	=	F

C=T
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Example

Cloudy

RainSprinkler
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4

Now	sample	
a	value	for	R	
from	the	
distribution	
P(R|C=T)	=	
[0.8,	0.2]

Say	we	sample	
R	=	T

C=T

S=F
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Example

Cloudy

RainSprinkler

 Wet
Grass
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P(C)
.50

.01

4

Now	sample	a	
value	for	W	from	
the	distribution	
P(W|S=F,	R=T)	=	
[0.9,	0.1]

Say	we	sample	
W	=	T

C=T

S=F
R=T
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Example

Cloudy

RainSprinkler

 Wet
Grass

C
T
F

.80

.20

P(R|C)C
T
F

.10

.50

P(S|C)

S R
T T
T F
F T
F F

.90

.90

.99
P(W|S,R)

P(C)
.50

.01

4

C=T

S=F
R=T

W=F

Our	random	sample	
is
C=T,	S=F,	R=T,	W=F
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Rejection	Sampling

• Suppose	we	want	to	estimate	P(Xk =	dk |	X1=d1,	X2=d2)
• For	this	query	all	of	the	samples	where	X1	is	not	equal	to	d1	
or	X2	=	d2	are	useless

• P(Xk =	dk |	X1=d1,	X2=d2)	=	
P(Xk =	dk ,	X1=d1,	X2=d2)/P(X1=d1,	X2=d2)

• So	we	have	to	count	how	many	samples	have	Xk =	dk and	
X1=d1	and	X2=d2	and	then	divide	by	the	number	of	samples	
that	have	X1=d1	and	X2=d2

• This	is	called	rejection	sampling---the	samples	were	X1	is	not	
equal	to	d1	or	X2	is	not	equal	to	d2	are	useless—they	are	
rejected.
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Rejection	Sampling

• Problem	is	if	X1=d1,	X2=d2	has	low	probability	we	will	
reject	almost	all	samples!
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Likelihood	Weighting

• If	we	want	to	estimate	a	conditional	probability	like	
P(Xk=dk |	X1=d1,	X2=d2)
we	force	all	samples	to	satisfy	the	condition.

• Problem—in	doing	so	we	bias	the	samples,	so	that	we	
are	no	longer	sampling	from	the	Bayes	net	distribution.

• “Solution:”	we	reweigh	the	samples	so	that	we	undo	this	
introduced	bias.
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Likelihood	Weighting

• Say	the	conditioning	is	X1=d1,	X2=d2
• Set	wt of	the	sample	=	1
• start	at	the	roots		as	before
• if	the	variable	is	fixed	by	the	condition,	we	set	it	to	the	
required	value	and	multiply	wt by	the	probability	it	takes	on	
that	value.

• Else	we	set	it	at	random	according	to	its	probability
• Moving	down,	we	set	the	value	of	a	variable	X	after	we	
have	set	the	values	of	all	of	its	parents.	
• Again	if	X	is	fixed	by	the	condition	we	set	it	to	the	required	
value	and	multiply	wt by	the	probability	it	takes	on	that	value

• Else	we	set	it	at	random	according	to	its	probability.
• At	the	end	we	have	a	single	sample	and	a	weight.
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Likelihood	Weighting

• To	estimate	the	probabilities	we	want	we	now	take	the	
sum	of	the	weights	of	the	good	samples	divided	by	the	
total	weight	of	the	samples.

• Pr(Xk=dk|	X1=d1,	X2=d2)	=	
sum	of	weights	of	samples	where	Xk=dk/
total	sum	of	weights	of	samples
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Example

A

B C

D

P(A) lo med hi

0.25 0.5 0.25

P(B|A) t f

lo 0.1 0.9

med 0.4 0.6

hi 0.9 0.1

P(D|B,C) lo med hi

t,t 0 0.1 0.9

t,f 0.1 0.4 0.5

f,t 0.5 0.4 0.1

f,f 0.9 0.1 0

P(C|A) t f

lo 0.1 0.9

med 0.4 0.6

hi 0.9 0.1



Example

• Applying	the	prior	sampling	technique	and	using	
random.uniform (see	the	sample.py python	code	linked	
on	the	website),	the	call	to	get_prior_samples(10)	
generates	the	following	10	samples:

1. A = med, B = f, C = f, D = lo
2. A = lo, B = f, C = f, D = lo
3. A = med, B = t, C = f, D = hi
4. A = lo, B = f, C = f, D = lo
5. A = med, B = f, C = f, D = lo
6. A = med, B = f, C = f, D = med
7. A = lo, B = t, C = f, D = hi
8. A = hi, B = t, C = t, D = med
9. A = med, B = t, C = t, D = hi
10. A = med, B = f, C = t, D = hi
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Example

• If	we	want	to	compute	P(C=t	|	D	=	med)	we	must	reject	
samples	1,	2,	3,	4,	5,	7,	9,	and	10	as	none	of	these	agree	
with	the	condition	D=med

1. A = med, B = f, C = f, D = lo
2. A = lo, B = f, C = f, D = lo
3. A = med, B = t, C = f, D = hi
4. A = lo, B = f, C = f, D = lo
5. A = med, B = f, C = f, D = lo
6. A = med, B = f, C = f, D = med
7. A = lo, B = t, C = f, D = hi
8. A = hi, B = t, C = t, D = med
9. A = med, B = t, C = t, D = hi
10. A = med, B = f, C = t, D = hi
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Example

• This	leaves	us	with	only	3	samples	

6. A = med, B = f, C = f, D = med
8. A = hi, B = t, C = t, D = med

• One of these has C=t so our estimate of P(C=t|D=med) = ½
• We do not have much confidence in this estimate since the number of 

non-rejected samples is so small (only 2).

• Using sample.py to generate 10000 samples we get 1980 of them left 
are rejection (about 20%), and we estimate P(C=t|D=med) = .47 and 
this estimate is pretty good.
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Example

• Using	likelihood	weighting	we	can	generate	samples	as	follows	
(again	sample.py gives	the	code)

Say	we	have	as	evidence	C=t
1. set	wt =	1.0
2. Sample	a	value	for	A.	A	is	not	set	in	evidence	so	we	sample	a	

value	for	it	from	the	distribution	P(A).	Perhaps	we	get	A=hi
3. Sample	a	value	for	B.	B	is	not	set	in	the	evidence	so	we	sample	a	

value	for	it	from	the	distribution	P(B|A=hi).	Perhaps	we	get	B=t
4. Sample	a	value	for	C.	C	is	in	evidence so	we	must	set	C=t	and	we	

set	wt =	wt*P(C=t|A=hi)=1.0*0.9—probability	of	the	evidence	
given	the	values	of	the	parents	already	set	in	the	sample.

5. Finally	we	sample	a	value	for	D.	D	is	not	set	in	evidence	so	we	
sample	a	value	for	it	from	the	distribution	P(D|B=t,	C=t).	
Perhaps	we	get	D=hi
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Example

• So	our	final	sample	is	
A=hi,	B=t,	C=t,	D=hi	with	wt=0.9

• If	we	generate	10	samples	(using	the	function	
get_likelihood_samples(10)	from	sample.py)	we	obtain:

1. wt = 0.4, A = med, B = f, C = t, D = lo
2. wt = 0.4, A = med, B = f, C = t, D = med
3. wt = 0.4, A = med, B = f, C = t, D = med
4. wt = 0.4, A = med, B = t, C = t, D = hi
5. wt = 0.1, A = lo, B = f, C = t, D = lo
6. wt = 0.4, A = med, B = t, C = t, D = med
7. wt = 0.4, A = med, B = f, C = t, D = hi
8. wt = 0.1, A = lo, B = f, C = t, D = lo
9. wt = 0.4, A = med, B = f, C = t, D = med
10. wt = 0.4, A = med, B = t, C = t, D = med
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Example

• From	these	samples	we	estimate	P(D=med|C=t)	to	be
the	weights	of	samples	2,	3,	6,	9	and	10	divided	by	the	
total	weight	of	samples
0.4 + 0.4 + 0.4 + 0.4 + 0.4/0.4 + 0.4 + 0.4 + 0.4 + 0.1

+0.4 + 0.4 + 0.1 + 0.4 + 0.4
= 0.35

1. wt = 0.4, A = med, B = f, C = t, D = lo
2. wt = 0.4, A = med, B = f, C = t, D = med
3. wt = 0.4, A = med, B = f, C = t, D = med
4. wt = 0.4, A = med, B = t, C = t, D = hi
5. wt = 0.1, A = lo, B = f, C = t, D = lo
6. wt = 0.4, A = med, B = t, C = t, D = med
7. wt = 0.4, A = med, B = f, C = t, D = hi
8. wt = 0.1, A = lo, B = f, C = t, D = lo
9. wt = 0.4, A = med, B = f, C = t, D = med
10. wt = 0.4, A = med, B = t, C = t, D = med
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Example

• A	larger	sample	of	10000	samples	gives	the	estimate	
P(D=med|C=t)	=	0.205	which	is	a	pretty	good	estimate.
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