Inference in Bayes Nets via Sampling

- If the Bayes net is too complex to do Variable Elimination on, or we want to answer queries that VE can't easily model.
- The Bayes net defines a joint distribution $\mathrm{P}(\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{Xn})$ over its features.
- Idea is to draw atomic events from this distribution in such a way that the probability we obtain the atomic event
$<X 1=d 1, X 2=d 2, \ldots, X n=d n>$ is exactly
$P(X 1=d 1, X 2=d 2, \ldots, X n=d n)$

Inference in Bayes Nets via Sampling

- Then if we collect a set of m samples

$$
\begin{aligned}
& <X 1=d 11, X 2=d 12, \ldots, X n=d 1 n> \\
& <X 1=d 21, X 2=d 32, \ldots, X n=d 2 n> \\
& <X 1=d 31, X 2=d 32, \ldots, X n=d 3 n> \\
& <X 1=d 41, X 2=d 42, \ldots, X n=d 4 n> \\
& \text { <X1=d51, X2=d52,..., Xn=d5n> } \\
& \text { <X1=d61, X2=d62, ..., Xn=d6n> }
\end{aligned}
$$

<X1=dm1, X2=dm2, ..., Xn=dmn>

Inference in Bayes Nets via Sampling

- We can estimate many different probabilities by looking that the frequency among the m samples.
- e.g. to estimate $\mathrm{P}(\mathrm{X} 1=a)$ we count how many samples have $\mathrm{X} 1=a$ and divide by m
- to estimate $\mathrm{P}(\mathrm{X} 1=\mathrm{a} \backslash \mathrm{X} 2=\mathrm{b})$ we count how many samples have $\mathrm{X} 1=a$ or $\mathrm{X} 2=\mathrm{b}$ and divide by m .
- Notice that the $2^{\text {nd }}$ query can't easily be answered with VE, even if we had the computational resources to do so.

Sampling from a distribution

- In python random.uniform(0.0, 1.0) generates a random number in the range [0.0, 1.0] with each number approximately equally likely to be generated.
- Sampling in Bayes Nets requires sampling from a distribution over a variable. This is accomplished by mapping the probabilities to equal sized ranges of the $[0,1]$ interval. Then selecting the variable's value based on which range the uniform random number lies in.

Sampling from a distribution

- E.g., say we have $P(A \mid B=t, C=t)=[0.1,0.3,0.4,0.2]$ That is the probability that A (given $B=t, C=t$) gets is first value is 0.1 , the probability it gets it second value is 0.3 , etc.
- We break the unit interval into 4 segments, the first being 0.1 long, the second begin 0.3 long, etc.

Sampling from a distribution

- We generate a uniformly distributed random number in the range 0.0-1.0, and if that number falls into the first range we set A to its first value, if it falls into the second range we set A to its second value, etc.
- The boundary value ($0.1,0.4,0.7$ in our example) is considered to lie in the right range, so if the random number is 0.1 we set A to its second value, if it is 0.4 we set A to its third value etc.

Sampling from a distribution

- E.g., the following uniform random numbers $0.1,0.827,0.326,0.865,0.775$ generates the following random settings of the variable A
$2^{\text {nd }}$ value of $A, 4^{\text {th }}$ value of $A, 2^{\text {nd }}$ value of $A, 4^{\text {th }}$ value of $A, 3$ rd value of A.

Prior Sampling---Generating Samples from a Bayes net

- Start at the roots of the Bayes nets (i.e., those variables that have no parents)
- Randomly select a value for each of these variables from the distribution given by the variables CPT.
- Work your way down the net, when you have a value for all of a variable X's parents randomly select a value for X using the distribution $\mathrm{P}(\mathrm{X} \mid \operatorname{par}(\mathrm{X}))$. This distribution is in X 's CPT and all of the variables in $\operatorname{par}(\mathrm{X})$ have already been set by the previous steps.
- When all variables have a value---you get one sample.

S	R	$\mathrm{P}(\mathrm{WIS}, \mathrm{R})$
T	T	.99
T	F	.90
F	T	.90
F	F	.01

Now sample a value for S from the distribution
$\mathrm{P}(\mathrm{S} \mid \mathrm{C}=\mathrm{T})=$ [0.1, 0.9]

Say we sample $\mathrm{S}=\mathrm{F}$

Rejection Sampling

- Suppose we want to estimate $P(X k=d k \mid X 1=d 1, X 2=d 2)$
- For this query all of the samples where X 1 is not equal to d 1 or X2 = d2 are useless
- $P(X k=d k \mid X 1=d 1, X 2=d 2)=$

$$
P(X k=d k, X 1=d 1, X 2=d 2) / P(X 1=d 1, X 2=d 2)
$$

- So we have to count how many samples have $X k=d k$ and $\mathrm{X} 1=\mathrm{d} 1$ and $\mathrm{X} 2=\mathrm{d} 2$ and then divide by the number of samples that have $\mathrm{X} 1=\mathrm{d} 1$ and $\mathrm{X} 2=\mathrm{d} 2$
- This is called rejection sampling---the samples were X1 is not equal to d1 or X 2 is not equal to d 2 are useless-they are rejected.

Rejection Sampling

- Problem is if $\mathrm{X} 1=\mathrm{d} 1, \mathrm{X} 2=\mathrm{d} 2$ has low probability we will reject almost all samples!

Likelihood Weighting

- If we want to estimate a conditional probability like P(Xk=dk | X1=d1, X2=d2) we force all samples to satisfy the condition.
- Problem-in doing so we bias the samples, so that we are no longer sampling from the Bayes net distribution.
- "Solution:" we reweigh the samples so that we undo this introduced bias.

Likelihood Weighting

- Say the conditioning is $\mathrm{X} 1=\mathrm{d} 1, \mathrm{X} 2=\mathrm{d} 2$
- Set wt of the sample = 1
- start at the roots as before
- if the variable is fixed by the condition, we set it to the required value and multiply wt by the probability it takes on that value.
- Else we set it at random according to its probability
- Moving down, we set the value of a variable X after we have set the values of all of its parents.
- Again if X is fixed by the condition we set it to the required value and multiply wt by the probability it takes on that value
- Else we set it at random according to its probability.
- At the end we have a single sample and a weight.

Likelihood Weighting

- To estimate the probabilities we want we now take the sum of the weights of the good samples divided by the total weight of the samples.
- $\operatorname{Pr}(X k=d k \mid X 1=d 1, X 2=d 2)=$ sum of weights of samples where $\mathrm{Xk}=\mathrm{dk}$ / total sum of weights of samples

Example

$\mathbf{P (A)}$	lo	med	hi
	0.25	0.5	0.25

$\mathbf{P}(\mathbf{B} \mid \mathbf{A})$	\mathbf{t}	\mathbf{f}
lo	0.1	0.9
med	0.4	0.6
hi	0.9	0.1

$\mathbf{P (D \| B , C)}$	lo	med	hi
t, t	0	0.1	0.9
t, f	0.1	0.4	0.5
f, t	0.5	0.4	0.1
f, f	0.9	0.1	0

Example

- Applying the prior sampling technique and using random.uniform (see the sample.py python code linked on the website), the call to get_prior_samples(10) generates the following 10 samples:

```
1. }A=med, B = f, C = f, D = lo
2. }A=lo,B=f,C=f,D=l
3. }A=med, B=t,C=f,D=h
4. }A=lo,B=f,C=f,D=l
5. }A=med,B=f,C=f,D=l
6. }A=med, B=f,C=f,D = med
7. }A=lo,B=t,C=f,D=h
8. }A=hi,B=t,C=t,D=me
9. }A=med, B=t, C = t, D = hi
10. }A=med,B=f,C=t,D=h
```


Example

- If we want to compute $\mathrm{P}(\mathrm{C}=\mathrm{t} \mid \mathrm{D}=\mathrm{med})$ we must reject samples $1,2,3,4,5,7,9$, and 10 as none of these agree with the condition $D=$ med

1. $A=$ med, $B=f, C=f, D=$ lo
2. $A=$ lo, $B=f, C=f, D=l o$
3. $A=$ med, $B=t, C=f, D=h i$
4. $A=l o, B=f, C=f, D=l o$
5. $A=$ med, $B=f, C=f, D=$ lo
6. $A=$ med, $B=f, C=f, D=$ med
7. $A=$ lo, $B=t, C=f, D=h i$
8. $A=h i, B=t, C=t, D=$ med
9. $A=$ med, $B=t, C=t, D=h i$
10. $A=$ med, $B=f, C=t, D=h i$

Example

- This leaves us with only 3 samples

6. $A=\operatorname{med}, B=f, C=f, D=$ med
7. $A=h i, B=t, C=t, D=$ med

- One of these has $C=t$ so our estimate of $P(C=t \mid D=m e d)=1 / 2$
- We do not have much confidence in this estimate since the number of non-rejected samples is so small (only 2).
- Using sample.py to generate 10000 samples we get 1980 of them left are rejection (about 20\%), and we estimate $\mathrm{P}(\mathrm{C}=\mathrm{t} \mid \mathrm{D}=\mathrm{med}$) $=.47$ and this estimate is pretty good.

Example

- Using likelihood weighting we can generate samples as follows (again sample.py gives the code)
Say we have as evidence $\mathrm{C}=\mathrm{t}$

1. \quad set $w t=1.0$
2. Sample a value for A. A is not set in evidence so we sample a value for it from the distribution $P(A)$. Perhaps we get $A=h i$
3. Sample a value for B. B is not set in the evidence so we sample a value for it from the distribution $\mathrm{P}(\mathrm{B} \mid \mathrm{A}=\mathrm{hi})$. Perhaps we get $\mathrm{B}=\mathrm{t}$
4. Sample a value for C. C is in evidence so we must set $C=t$ and we set $w t=w t * P(C=t \mid A=h i)=1.0 * 0.9-$ probability of the evidence given the values of the parents already set in the sample.
5. Finally we sample a value for D. D is not set in evidence so we sample a value for it from the distribution $P(D \mid B=t, C=t)$. Perhaps we get $D=h i$

Example

- So our final sample is $A=h i, B=t, C=t, D=h i$ with $w t=0.9$
- If we generate 10 samples (using the function get_likelihood_samples(10) from sample.py) we obtain:

1. $w t=0.4, A=$ med, $B=f, C=t, D=l o$
2. $w t=0.4, A=$ med, $B=f, C=t, D=$ med
3. $w t=0.4, A=$ med, $B=f, C=t, D=$ med
4. $w t=0.4, A=$ med, $B=t, C=t, D=\mathrm{hi}$
5. $w t=0.1, A=l o, B=f, C=t, D=l o$
6. $w t=0.4, A=$ med, $B=t, C=t, D=\operatorname{med}$
7. $w t=0.4, A=$ med, $B=f, C=t, D=$ hi
8. $w t=0.1, A=l o, B=f, C=t, D=l o$
9. $w t=0.4, A=$ med, $B=f, C=t, D=$ med
10. $w t=0.4, A=$ med, $B=t, C=t, D=$ med

Example

- From these samples we estimate $P(D=m e d \mid C=t)$ to be the weights of samples $2,3,6,9$ and 10 divided by the total weight of samples

$$
\begin{aligned}
& 0.4+0.4+0.4+0.4+0.4 / 0.4+0.4+0.4+0.4+0.1 \\
& =0.35 r
\end{aligned}
$$

```
1. wt \(=0.4, A=\) med, \(B=f, C=t, D=l o\)
2. \(w t=0.4, A=\) med, \(B=f, C=t, D=\) med
3. \(w t=0.4, A=\) med, \(B=f, C=t, D=\) med
4. wt \(=0.4, A=\) med, \(B=t, C=t, D=h i\)
5. \(w t=0.1, A=l o, B=f, C=t, D=l o\)
6. wt \(=0.4, A=\) med, \(B=t, C=t, D=\) med
7. wt \(=0.4, A=\) med, \(B=f, C=t, D=h i\)
8. wt \(=0.1, A=l o, B=f, C=t, D=l o\)
9. wt \(=0.4, A=\) med, \(B=f, C=t, D=\) med
10. wt \(=0.4, A=\) med, \(B=t, C=t, D=\) med
```


Example

- A larger sample of 10000 samples gives the estimate $P(D=m e d \mid C=t)=0.205$ which is a pretty good estimate.

